\left\{ \begin{array} { l } { 120 x + 100 y = 39000 } \\ { 18 x + 20 y = 6600 } \end{array} \right.
Solve for x, y
x=200
y=150
Graph
Share
Copied to clipboard
120x+100y=39000,18x+20y=6600
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
120x+100y=39000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
120x=-100y+39000
Subtract 100y from both sides of the equation.
x=\frac{1}{120}\left(-100y+39000\right)
Divide both sides by 120.
x=-\frac{5}{6}y+325
Multiply \frac{1}{120} times -100y+39000.
18\left(-\frac{5}{6}y+325\right)+20y=6600
Substitute -\frac{5y}{6}+325 for x in the other equation, 18x+20y=6600.
-15y+5850+20y=6600
Multiply 18 times -\frac{5y}{6}+325.
5y+5850=6600
Add -15y to 20y.
5y=750
Subtract 5850 from both sides of the equation.
y=150
Divide both sides by 5.
x=-\frac{5}{6}\times 150+325
Substitute 150 for y in x=-\frac{5}{6}y+325. Because the resulting equation contains only one variable, you can solve for x directly.
x=-125+325
Multiply -\frac{5}{6} times 150.
x=200
Add 325 to -125.
x=200,y=150
The system is now solved.
120x+100y=39000,18x+20y=6600
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}120&100\\18&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}39000\\6600\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}120&100\\18&20\end{matrix}\right))\left(\begin{matrix}120&100\\18&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}120&100\\18&20\end{matrix}\right))\left(\begin{matrix}39000\\6600\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}120&100\\18&20\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}120&100\\18&20\end{matrix}\right))\left(\begin{matrix}39000\\6600\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}120&100\\18&20\end{matrix}\right))\left(\begin{matrix}39000\\6600\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{120\times 20-100\times 18}&-\frac{100}{120\times 20-100\times 18}\\-\frac{18}{120\times 20-100\times 18}&\frac{120}{120\times 20-100\times 18}\end{matrix}\right)\left(\begin{matrix}39000\\6600\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{30}&-\frac{1}{6}\\-\frac{3}{100}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}39000\\6600\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{30}\times 39000-\frac{1}{6}\times 6600\\-\frac{3}{100}\times 39000+\frac{1}{5}\times 6600\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}200\\150\end{matrix}\right)
Do the arithmetic.
x=200,y=150
Extract the matrix elements x and y.
120x+100y=39000,18x+20y=6600
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
18\times 120x+18\times 100y=18\times 39000,120\times 18x+120\times 20y=120\times 6600
To make 120x and 18x equal, multiply all terms on each side of the first equation by 18 and all terms on each side of the second by 120.
2160x+1800y=702000,2160x+2400y=792000
Simplify.
2160x-2160x+1800y-2400y=702000-792000
Subtract 2160x+2400y=792000 from 2160x+1800y=702000 by subtracting like terms on each side of the equal sign.
1800y-2400y=702000-792000
Add 2160x to -2160x. Terms 2160x and -2160x cancel out, leaving an equation with only one variable that can be solved.
-600y=702000-792000
Add 1800y to -2400y.
-600y=-90000
Add 702000 to -792000.
y=150
Divide both sides by -600.
18x+20\times 150=6600
Substitute 150 for y in 18x+20y=6600. Because the resulting equation contains only one variable, you can solve for x directly.
18x+3000=6600
Multiply 20 times 150.
18x=3600
Subtract 3000 from both sides of the equation.
x=200
Divide both sides by 18.
x=200,y=150
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}