\left\{ \begin{array} { l } { 12 x + 20 y = 1296 } \\ { 12 x + 2 + 12 y + 22 = 1296 } \end{array} \right.
Solve for x, y
x=103
y=3
Graph
Share
Copied to clipboard
12x+20y=1296,12x+12y+24=1296
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
12x+20y=1296
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
12x=-20y+1296
Subtract 20y from both sides of the equation.
x=\frac{1}{12}\left(-20y+1296\right)
Divide both sides by 12.
x=-\frac{5}{3}y+108
Multiply \frac{1}{12} times -20y+1296.
12\left(-\frac{5}{3}y+108\right)+12y+24=1296
Substitute -\frac{5y}{3}+108 for x in the other equation, 12x+12y+24=1296.
-20y+1296+12y+24=1296
Multiply 12 times -\frac{5y}{3}+108.
-8y+1296+24=1296
Add -20y to 12y.
-8y+1320=1296
Add 1296 to 24.
-8y=-24
Subtract 1320 from both sides of the equation.
y=3
Divide both sides by -8.
x=-\frac{5}{3}\times 3+108
Substitute 3 for y in x=-\frac{5}{3}y+108. Because the resulting equation contains only one variable, you can solve for x directly.
x=-5+108
Multiply -\frac{5}{3} times 3.
x=103
Add 108 to -5.
x=103,y=3
The system is now solved.
12x+20y=1296,12x+12y+24=1296
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}12&20\\12&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1296\\1272\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}12&20\\12&12\end{matrix}\right))\left(\begin{matrix}12&20\\12&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&20\\12&12\end{matrix}\right))\left(\begin{matrix}1296\\1272\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}12&20\\12&12\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&20\\12&12\end{matrix}\right))\left(\begin{matrix}1296\\1272\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&20\\12&12\end{matrix}\right))\left(\begin{matrix}1296\\1272\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{12\times 12-20\times 12}&-\frac{20}{12\times 12-20\times 12}\\-\frac{12}{12\times 12-20\times 12}&\frac{12}{12\times 12-20\times 12}\end{matrix}\right)\left(\begin{matrix}1296\\1272\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}&\frac{5}{24}\\\frac{1}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}1296\\1272\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}\times 1296+\frac{5}{24}\times 1272\\\frac{1}{8}\times 1296-\frac{1}{8}\times 1272\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}103\\3\end{matrix}\right)
Do the arithmetic.
x=103,y=3
Extract the matrix elements x and y.
12x+20y=1296,12x+12y+24=1296
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
12x-12x+20y-12y-24=1296-1296
Subtract 12x+12y+24=1296 from 12x+20y=1296 by subtracting like terms on each side of the equal sign.
20y-12y-24=1296-1296
Add 12x to -12x. Terms 12x and -12x cancel out, leaving an equation with only one variable that can be solved.
8y-24=1296-1296
Add 20y to -12y.
8y-24=0
Add 1296 to -1296.
8y=24
Add 24 to both sides of the equation.
y=3
Divide both sides by 8.
12x+12\times 3+24=1296
Substitute 3 for y in 12x+12y+24=1296. Because the resulting equation contains only one variable, you can solve for x directly.
12x+36+24=1296
Multiply 12 times 3.
12x+60=1296
Add 36 to 24.
12x=1236
Subtract 60 from both sides of the equation.
x=103
Divide both sides by 12.
x=103,y=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}