\left\{ \begin{array} { l } { 12 + 2 a = 18 } \\ { 3 b - 4 = - 7 } \end{array} \right.
Solve for a, b
a=3
b=-1
Share
Copied to clipboard
2a=18-12
Consider the first equation. Subtract 12 from both sides.
2a=6
Subtract 12 from 18 to get 6.
a=\frac{6}{2}
Divide both sides by 2.
a=3
Divide 6 by 2 to get 3.
3b=-7+4
Consider the second equation. Add 4 to both sides.
3b=-3
Add -7 and 4 to get -3.
b=\frac{-3}{3}
Divide both sides by 3.
b=-1
Divide -3 by 3 to get -1.
a=3 b=-1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}