Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=\frac{570}{8}
Consider the second equation. Divide both sides by 8.
x+y=\frac{285}{4}
Reduce the fraction \frac{570}{8} to lowest terms by extracting and canceling out 2.
10x+8y=838,x+y=\frac{285}{4}
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
10x+8y=838
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
10x=-8y+838
Subtract 8y from both sides of the equation.
x=\frac{1}{10}\left(-8y+838\right)
Divide both sides by 10.
x=-\frac{4}{5}y+\frac{419}{5}
Multiply \frac{1}{10} times -8y+838.
-\frac{4}{5}y+\frac{419}{5}+y=\frac{285}{4}
Substitute \frac{-4y+419}{5} for x in the other equation, x+y=\frac{285}{4}.
\frac{1}{5}y+\frac{419}{5}=\frac{285}{4}
Add -\frac{4y}{5} to y.
\frac{1}{5}y=-\frac{251}{20}
Subtract \frac{419}{5} from both sides of the equation.
y=-\frac{251}{4}
Multiply both sides by 5.
x=-\frac{4}{5}\left(-\frac{251}{4}\right)+\frac{419}{5}
Substitute -\frac{251}{4} for y in x=-\frac{4}{5}y+\frac{419}{5}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{251+419}{5}
Multiply -\frac{4}{5} times -\frac{251}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=134
Add \frac{419}{5} to \frac{251}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=134,y=-\frac{251}{4}
The system is now solved.
x+y=\frac{570}{8}
Consider the second equation. Divide both sides by 8.
x+y=\frac{285}{4}
Reduce the fraction \frac{570}{8} to lowest terms by extracting and canceling out 2.
10x+8y=838,x+y=\frac{285}{4}
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}10&8\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}838\\\frac{285}{4}\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}10&8\\1&1\end{matrix}\right))\left(\begin{matrix}10&8\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&8\\1&1\end{matrix}\right))\left(\begin{matrix}838\\\frac{285}{4}\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}10&8\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&8\\1&1\end{matrix}\right))\left(\begin{matrix}838\\\frac{285}{4}\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&8\\1&1\end{matrix}\right))\left(\begin{matrix}838\\\frac{285}{4}\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10-8}&-\frac{8}{10-8}\\-\frac{1}{10-8}&\frac{10}{10-8}\end{matrix}\right)\left(\begin{matrix}838\\\frac{285}{4}\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-4\\-\frac{1}{2}&5\end{matrix}\right)\left(\begin{matrix}838\\\frac{285}{4}\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 838-4\times \frac{285}{4}\\-\frac{1}{2}\times 838+5\times \frac{285}{4}\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}134\\-\frac{251}{4}\end{matrix}\right)
Do the arithmetic.
x=134,y=-\frac{251}{4}
Extract the matrix elements x and y.
x+y=\frac{570}{8}
Consider the second equation. Divide both sides by 8.
x+y=\frac{285}{4}
Reduce the fraction \frac{570}{8} to lowest terms by extracting and canceling out 2.
10x+8y=838,x+y=\frac{285}{4}
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10x+8y=838,10x+10y=10\times \frac{285}{4}
To make 10x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 10.
10x+8y=838,10x+10y=\frac{1425}{2}
Simplify.
10x-10x+8y-10y=838-\frac{1425}{2}
Subtract 10x+10y=\frac{1425}{2} from 10x+8y=838 by subtracting like terms on each side of the equal sign.
8y-10y=838-\frac{1425}{2}
Add 10x to -10x. Terms 10x and -10x cancel out, leaving an equation with only one variable that can be solved.
-2y=838-\frac{1425}{2}
Add 8y to -10y.
-2y=\frac{251}{2}
Add 838 to -\frac{1425}{2}.
y=-\frac{251}{4}
Divide both sides by -2.
x-\frac{251}{4}=\frac{285}{4}
Substitute -\frac{251}{4} for y in x+y=\frac{285}{4}. Because the resulting equation contains only one variable, you can solve for x directly.
x=134
Add \frac{251}{4} to both sides of the equation.
x=134,y=-\frac{251}{4}
The system is now solved.