\left\{ \begin{array} { l } { 10 x + 20 y = 650 } \\ { 7 x + 9 y = 355 } \end{array} \right.
Solve for x, y
x=25
y=20
Graph
Share
Copied to clipboard
10x+20y=650,7x+9y=355
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
10x+20y=650
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
10x=-20y+650
Subtract 20y from both sides of the equation.
x=\frac{1}{10}\left(-20y+650\right)
Divide both sides by 10.
x=-2y+65
Multiply \frac{1}{10} times -20y+650.
7\left(-2y+65\right)+9y=355
Substitute -2y+65 for x in the other equation, 7x+9y=355.
-14y+455+9y=355
Multiply 7 times -2y+65.
-5y+455=355
Add -14y to 9y.
-5y=-100
Subtract 455 from both sides of the equation.
y=20
Divide both sides by -5.
x=-2\times 20+65
Substitute 20 for y in x=-2y+65. Because the resulting equation contains only one variable, you can solve for x directly.
x=-40+65
Multiply -2 times 20.
x=25
Add 65 to -40.
x=25,y=20
The system is now solved.
10x+20y=650,7x+9y=355
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}10&20\\7&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}650\\355\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}10&20\\7&9\end{matrix}\right))\left(\begin{matrix}10&20\\7&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&20\\7&9\end{matrix}\right))\left(\begin{matrix}650\\355\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}10&20\\7&9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&20\\7&9\end{matrix}\right))\left(\begin{matrix}650\\355\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&20\\7&9\end{matrix}\right))\left(\begin{matrix}650\\355\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{10\times 9-20\times 7}&-\frac{20}{10\times 9-20\times 7}\\-\frac{7}{10\times 9-20\times 7}&\frac{10}{10\times 9-20\times 7}\end{matrix}\right)\left(\begin{matrix}650\\355\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{50}&\frac{2}{5}\\\frac{7}{50}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}650\\355\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{50}\times 650+\frac{2}{5}\times 355\\\frac{7}{50}\times 650-\frac{1}{5}\times 355\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\20\end{matrix}\right)
Do the arithmetic.
x=25,y=20
Extract the matrix elements x and y.
10x+20y=650,7x+9y=355
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
7\times 10x+7\times 20y=7\times 650,10\times 7x+10\times 9y=10\times 355
To make 10x and 7x equal, multiply all terms on each side of the first equation by 7 and all terms on each side of the second by 10.
70x+140y=4550,70x+90y=3550
Simplify.
70x-70x+140y-90y=4550-3550
Subtract 70x+90y=3550 from 70x+140y=4550 by subtracting like terms on each side of the equal sign.
140y-90y=4550-3550
Add 70x to -70x. Terms 70x and -70x cancel out, leaving an equation with only one variable that can be solved.
50y=4550-3550
Add 140y to -90y.
50y=1000
Add 4550 to -3550.
y=20
Divide both sides by 50.
7x+9\times 20=355
Substitute 20 for y in 7x+9y=355. Because the resulting equation contains only one variable, you can solve for x directly.
7x+180=355
Multiply 9 times 20.
7x=175
Subtract 180 from both sides of the equation.
x=25
Divide both sides by 7.
x=25,y=20
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}