\left\{ \begin{array} { l } { 10 x + 20 y = 4000 } \\ { 20 x + 10 y = 3500 } \end{array} \right.
Solve for x, y
x=100
y=150
Graph
Share
Copied to clipboard
10x+20y=4000,20x+10y=3500
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
10x+20y=4000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
10x=-20y+4000
Subtract 20y from both sides of the equation.
x=\frac{1}{10}\left(-20y+4000\right)
Divide both sides by 10.
x=-2y+400
Multiply \frac{1}{10} times -20y+4000.
20\left(-2y+400\right)+10y=3500
Substitute -2y+400 for x in the other equation, 20x+10y=3500.
-40y+8000+10y=3500
Multiply 20 times -2y+400.
-30y+8000=3500
Add -40y to 10y.
-30y=-4500
Subtract 8000 from both sides of the equation.
y=150
Divide both sides by -30.
x=-2\times 150+400
Substitute 150 for y in x=-2y+400. Because the resulting equation contains only one variable, you can solve for x directly.
x=-300+400
Multiply -2 times 150.
x=100
Add 400 to -300.
x=100,y=150
The system is now solved.
10x+20y=4000,20x+10y=3500
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}10&20\\20&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4000\\3500\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}10&20\\20&10\end{matrix}\right))\left(\begin{matrix}10&20\\20&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&20\\20&10\end{matrix}\right))\left(\begin{matrix}4000\\3500\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}10&20\\20&10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&20\\20&10\end{matrix}\right))\left(\begin{matrix}4000\\3500\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&20\\20&10\end{matrix}\right))\left(\begin{matrix}4000\\3500\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{10\times 10-20\times 20}&-\frac{20}{10\times 10-20\times 20}\\-\frac{20}{10\times 10-20\times 20}&\frac{10}{10\times 10-20\times 20}\end{matrix}\right)\left(\begin{matrix}4000\\3500\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{30}&\frac{1}{15}\\\frac{1}{15}&-\frac{1}{30}\end{matrix}\right)\left(\begin{matrix}4000\\3500\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{30}\times 4000+\frac{1}{15}\times 3500\\\frac{1}{15}\times 4000-\frac{1}{30}\times 3500\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\150\end{matrix}\right)
Do the arithmetic.
x=100,y=150
Extract the matrix elements x and y.
10x+20y=4000,20x+10y=3500
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
20\times 10x+20\times 20y=20\times 4000,10\times 20x+10\times 10y=10\times 3500
To make 10x and 20x equal, multiply all terms on each side of the first equation by 20 and all terms on each side of the second by 10.
200x+400y=80000,200x+100y=35000
Simplify.
200x-200x+400y-100y=80000-35000
Subtract 200x+100y=35000 from 200x+400y=80000 by subtracting like terms on each side of the equal sign.
400y-100y=80000-35000
Add 200x to -200x. Terms 200x and -200x cancel out, leaving an equation with only one variable that can be solved.
300y=80000-35000
Add 400y to -100y.
300y=45000
Add 80000 to -35000.
y=150
Divide both sides by 300.
20x+10\times 150=3500
Substitute 150 for y in 20x+10y=3500. Because the resulting equation contains only one variable, you can solve for x directly.
20x+1500=3500
Multiply 10 times 150.
20x=2000
Subtract 1500 from both sides of the equation.
x=100
Divide both sides by 20.
x=100,y=150
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}