Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x+12y=-520,x+y=48
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
10x+12y=-520
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
10x=-12y-520
Subtract 12y from both sides of the equation.
x=\frac{1}{10}\left(-12y-520\right)
Divide both sides by 10.
x=-\frac{6}{5}y-52
Multiply \frac{1}{10} times -12y-520.
-\frac{6}{5}y-52+y=48
Substitute -\frac{6y}{5}-52 for x in the other equation, x+y=48.
-\frac{1}{5}y-52=48
Add -\frac{6y}{5} to y.
-\frac{1}{5}y=100
Add 52 to both sides of the equation.
y=-500
Multiply both sides by -5.
x=-\frac{6}{5}\left(-500\right)-52
Substitute -500 for y in x=-\frac{6}{5}y-52. Because the resulting equation contains only one variable, you can solve for x directly.
x=600-52
Multiply -\frac{6}{5} times -500.
x=548
Add -52 to 600.
x=548,y=-500
The system is now solved.
10x+12y=-520,x+y=48
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}10&12\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-520\\48\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}10&12\\1&1\end{matrix}\right))\left(\begin{matrix}10&12\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&12\\1&1\end{matrix}\right))\left(\begin{matrix}-520\\48\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}10&12\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&12\\1&1\end{matrix}\right))\left(\begin{matrix}-520\\48\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&12\\1&1\end{matrix}\right))\left(\begin{matrix}-520\\48\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10-12}&-\frac{12}{10-12}\\-\frac{1}{10-12}&\frac{10}{10-12}\end{matrix}\right)\left(\begin{matrix}-520\\48\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&6\\\frac{1}{2}&-5\end{matrix}\right)\left(\begin{matrix}-520\\48\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-520\right)+6\times 48\\\frac{1}{2}\left(-520\right)-5\times 48\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}548\\-500\end{matrix}\right)
Do the arithmetic.
x=548,y=-500
Extract the matrix elements x and y.
10x+12y=-520,x+y=48
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10x+12y=-520,10x+10y=10\times 48
To make 10x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 10.
10x+12y=-520,10x+10y=480
Simplify.
10x-10x+12y-10y=-520-480
Subtract 10x+10y=480 from 10x+12y=-520 by subtracting like terms on each side of the equal sign.
12y-10y=-520-480
Add 10x to -10x. Terms 10x and -10x cancel out, leaving an equation with only one variable that can be solved.
2y=-520-480
Add 12y to -10y.
2y=-1000
Add -520 to -480.
y=-500
Divide both sides by 2.
x-500=48
Substitute -500 for y in x+y=48. Because the resulting equation contains only one variable, you can solve for x directly.
x=548
Add 500 to both sides of the equation.
x=548,y=-500
The system is now solved.