Skip to main content
Solve for t, k
Tick mark Image

Share

1.4-3.2t=\frac{50}{98}k
Consider the first equation. Expand \frac{5}{9.8} by multiplying both numerator and the denominator by 10.
1.4-3.2t=\frac{25}{49}k
Reduce the fraction \frac{50}{98} to lowest terms by extracting and canceling out 2.
1.4-3.2t-\frac{25}{49}k=0
Subtract \frac{25}{49}k from both sides.
-3.2t-\frac{25}{49}k=-1.4
Subtract 1.4 from both sides. Anything subtracted from zero gives its negation.
\left(0.6+0.8t\right)\times 9.8-2.5k=0
Consider the second equation. Subtract 2.5k from both sides.
-3.2t-\frac{25}{49}k=-1.4,9.8\left(0.8t+0.6\right)-2.5k=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-3.2t-\frac{25}{49}k=-1.4
Choose one of the equations and solve it for t by isolating t on the left hand side of the equal sign.
-3.2t=\frac{25}{49}k-1.4
Add \frac{25k}{49} to both sides of the equation.
t=-0.3125\left(\frac{25}{49}k-1.4\right)
Divide both sides of the equation by -3.2, which is the same as multiplying both sides by the reciprocal of the fraction.
t=-\frac{125}{784}k+0.4375
Multiply -0.3125 times \frac{25k}{49}-\frac{7}{5}.
9.8\left(0.8\left(-\frac{125}{784}k+0.4375\right)+0.6\right)-2.5k=0
Substitute -\frac{125k}{784}+\frac{7}{16} for t in the other equation, 9.8\left(0.8t+0.6\right)-2.5k=0.
9.8\left(-\frac{25}{196}k+0.35+0.6\right)-2.5k=0
Multiply 0.8 times -\frac{125k}{784}+\frac{7}{16}.
9.8\left(-\frac{25}{196}k+0.95\right)-2.5k=0
Add 0.35 to 0.6 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-\frac{5}{4}k+9.31-2.5k=0
Multiply 9.8 times -\frac{25k}{196}+\frac{19}{20}.
-\frac{15}{4}k+9.31=0
Add -\frac{5k}{4} to -\frac{5k}{2}.
-\frac{15}{4}k=-9.31
Subtract 9.31 from both sides of the equation.
k=\frac{931}{375}
Divide both sides of the equation by -\frac{15}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
t=-\frac{125}{784}\times \frac{931}{375}+0.4375
Substitute \frac{931}{375} for k in t=-\frac{125}{784}k+0.4375. Because the resulting equation contains only one variable, you can solve for t directly.
t=-\frac{19}{48}+0.4375
Multiply -\frac{125}{784} times \frac{931}{375} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
t=\frac{1}{24}
Add 0.4375 to -\frac{19}{48} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=\frac{1}{24},k=\frac{931}{375}
The system is now solved.
1.4-3.2t=\frac{50}{98}k
Consider the first equation. Expand \frac{5}{9.8} by multiplying both numerator and the denominator by 10.
1.4-3.2t=\frac{25}{49}k
Reduce the fraction \frac{50}{98} to lowest terms by extracting and canceling out 2.
1.4-3.2t-\frac{25}{49}k=0
Subtract \frac{25}{49}k from both sides.
-3.2t-\frac{25}{49}k=-1.4
Subtract 1.4 from both sides. Anything subtracted from zero gives its negation.
\left(0.6+0.8t\right)\times 9.8-2.5k=0
Consider the second equation. Subtract 2.5k from both sides.
-3.2t-\frac{25}{49}k=-1.4,9.8\left(0.8t+0.6\right)-2.5k=0
Put the equations in standard form and then use matrices to solve the system of equations.
9.8\left(0.8t+0.6\right)-2.5k=0
Simplify the second equation to put it in standard form.
7.84t+5.88-2.5k=0
Multiply 9.8 times 0.8t+0.6.
7.84t-2.5k=-5.88
Subtract 5.88 from both sides of the equation.
\left(\begin{matrix}-3.2&-\frac{25}{49}\\7.84&-2.5\end{matrix}\right)\left(\begin{matrix}t\\k\end{matrix}\right)=\left(\begin{matrix}-1.4\\-5.88\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-3.2&-\frac{25}{49}\\7.84&-2.5\end{matrix}\right))\left(\begin{matrix}-3.2&-\frac{25}{49}\\7.84&-2.5\end{matrix}\right)\left(\begin{matrix}t\\k\end{matrix}\right)=inverse(\left(\begin{matrix}-3.2&-\frac{25}{49}\\7.84&-2.5\end{matrix}\right))\left(\begin{matrix}-1.4\\-5.88\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-3.2&-\frac{25}{49}\\7.84&-2.5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}t\\k\end{matrix}\right)=inverse(\left(\begin{matrix}-3.2&-\frac{25}{49}\\7.84&-2.5\end{matrix}\right))\left(\begin{matrix}-1.4\\-5.88\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}t\\k\end{matrix}\right)=inverse(\left(\begin{matrix}-3.2&-\frac{25}{49}\\7.84&-2.5\end{matrix}\right))\left(\begin{matrix}-1.4\\-5.88\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}t\\k\end{matrix}\right)=\left(\begin{matrix}-\frac{2.5}{-3.2\left(-2.5\right)-\left(-\frac{25}{49}\times 7.84\right)}&-\frac{-\frac{25}{49}}{-3.2\left(-2.5\right)-\left(-\frac{25}{49}\times 7.84\right)}\\-\frac{7.84}{-3.2\left(-2.5\right)-\left(-\frac{25}{49}\times 7.84\right)}&-\frac{3.2}{-3.2\left(-2.5\right)-\left(-\frac{25}{49}\times 7.84\right)}\end{matrix}\right)\left(\begin{matrix}-1.4\\-5.88\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}t\\k\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{24}&\frac{25}{588}\\-\frac{49}{75}&-\frac{4}{15}\end{matrix}\right)\left(\begin{matrix}-1.4\\-5.88\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}t\\k\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{24}\left(-1.4\right)+\frac{25}{588}\left(-5.88\right)\\-\frac{49}{75}\left(-1.4\right)-\frac{4}{15}\left(-5.88\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}t\\k\end{matrix}\right)=\left(\begin{matrix}\frac{1}{24}\\\frac{931}{375}\end{matrix}\right)
Do the arithmetic.
t=\frac{1}{24},k=\frac{931}{375}
Extract the matrix elements t and k.