\left\{ \begin{array} { l } { 1 + \frac { 1 } { y } = \frac { 1 } { 8 } } \\ { \frac { 1 } { x } + \frac { 4 } { y } = \frac { 1 } { 4 } } \end{array} \right.
Solve for y, x
x=\frac{4}{15}\approx 0.266666667
y = -\frac{8}{7} = -1\frac{1}{7} \approx -1.142857143
Graph
Share
Copied to clipboard
8y+8=y
Consider the first equation. Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 8y, the least common multiple of y,8.
8y+8-y=0
Subtract y from both sides.
7y+8=0
Combine 8y and -y to get 7y.
7y=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
y=-\frac{8}{7}
Divide both sides by 7.
\frac{1}{x}+\frac{4}{-\frac{8}{7}}=\frac{1}{4}
Consider the second equation. Insert the known values of variables into the equation.
4+4x\times \frac{4}{-\frac{8}{7}}=x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4x, the least common multiple of x,4.
4+4x\times 4\left(-\frac{7}{8}\right)=x
Divide 4 by -\frac{8}{7} by multiplying 4 by the reciprocal of -\frac{8}{7}.
4+4x\left(-\frac{7}{2}\right)=x
Multiply 4 and -\frac{7}{8} to get -\frac{7}{2}.
4-14x=x
Multiply 4 and -\frac{7}{2} to get -14.
4-14x-x=0
Subtract x from both sides.
4-15x=0
Combine -14x and -x to get -15x.
-15x=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-4}{-15}
Divide both sides by -15.
x=\frac{4}{15}
Fraction \frac{-4}{-15} can be simplified to \frac{4}{15} by removing the negative sign from both the numerator and the denominator.
y=-\frac{8}{7} x=\frac{4}{15}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}