\left\{ \begin{array} { l } { 0 = 4 a - 2 b - 4 } \\ { 0 = 16 a + 4 b - 4 } \end{array} \right.
Solve for a, b
a=\frac{1}{2}=0.5
b=-1
Share
Copied to clipboard
4a-2b-4=0
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
4a-2b=4
Add 4 to both sides. Anything plus zero gives itself.
16a+4b-4=0
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
16a+4b=4
Add 4 to both sides. Anything plus zero gives itself.
4a-2b=4,16a+4b=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4a-2b=4
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
4a=2b+4
Add 2b to both sides of the equation.
a=\frac{1}{4}\left(2b+4\right)
Divide both sides by 4.
a=\frac{1}{2}b+1
Multiply \frac{1}{4} times 4+2b.
16\left(\frac{1}{2}b+1\right)+4b=4
Substitute \frac{b}{2}+1 for a in the other equation, 16a+4b=4.
8b+16+4b=4
Multiply 16 times \frac{b}{2}+1.
12b+16=4
Add 8b to 4b.
12b=-12
Subtract 16 from both sides of the equation.
b=-1
Divide both sides by 12.
a=\frac{1}{2}\left(-1\right)+1
Substitute -1 for b in a=\frac{1}{2}b+1. Because the resulting equation contains only one variable, you can solve for a directly.
a=-\frac{1}{2}+1
Multiply \frac{1}{2} times -1.
a=\frac{1}{2}
Add 1 to -\frac{1}{2}.
a=\frac{1}{2},b=-1
The system is now solved.
4a-2b-4=0
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
4a-2b=4
Add 4 to both sides. Anything plus zero gives itself.
16a+4b-4=0
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
16a+4b=4
Add 4 to both sides. Anything plus zero gives itself.
4a-2b=4,16a+4b=4
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&-2\\16&4\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}4\\4\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&-2\\16&4\end{matrix}\right))\left(\begin{matrix}4&-2\\16&4\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\16&4\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&-2\\16&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\16&4\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\16&4\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4\times 4-\left(-2\times 16\right)}&-\frac{-2}{4\times 4-\left(-2\times 16\right)}\\-\frac{16}{4\times 4-\left(-2\times 16\right)}&\frac{4}{4\times 4-\left(-2\times 16\right)}\end{matrix}\right)\left(\begin{matrix}4\\4\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&\frac{1}{24}\\-\frac{1}{3}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}4\\4\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\times 4+\frac{1}{24}\times 4\\-\frac{1}{3}\times 4+\frac{1}{12}\times 4\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\-1\end{matrix}\right)
Do the arithmetic.
a=\frac{1}{2},b=-1
Extract the matrix elements a and b.
4a-2b-4=0
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
4a-2b=4
Add 4 to both sides. Anything plus zero gives itself.
16a+4b-4=0
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
16a+4b=4
Add 4 to both sides. Anything plus zero gives itself.
4a-2b=4,16a+4b=4
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
16\times 4a+16\left(-2\right)b=16\times 4,4\times 16a+4\times 4b=4\times 4
To make 4a and 16a equal, multiply all terms on each side of the first equation by 16 and all terms on each side of the second by 4.
64a-32b=64,64a+16b=16
Simplify.
64a-64a-32b-16b=64-16
Subtract 64a+16b=16 from 64a-32b=64 by subtracting like terms on each side of the equal sign.
-32b-16b=64-16
Add 64a to -64a. Terms 64a and -64a cancel out, leaving an equation with only one variable that can be solved.
-48b=64-16
Add -32b to -16b.
-48b=48
Add 64 to -16.
b=-1
Divide both sides by -48.
16a+4\left(-1\right)=4
Substitute -1 for b in 16a+4b=4. Because the resulting equation contains only one variable, you can solve for a directly.
16a-4=4
Multiply 4 times -1.
16a=8
Add 4 to both sides of the equation.
a=\frac{1}{2}
Divide both sides by 16.
a=\frac{1}{2},b=-1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}