\left\{ \begin{array} { l } { 0 = \frac { 9 } { 4 } a + \frac { 3 } { 2 } b + 3 } \\ { 0 = 16 a + 4 b + 3 } \end{array} \right.
Solve for a, b
a=\frac{1}{2}=0.5
b = -\frac{11}{4} = -2\frac{3}{4} = -2.75
Share
Copied to clipboard
\frac{9}{4}a+\frac{3}{2}b+3=0
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
\frac{9}{4}a+\frac{3}{2}b=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
16a+4b+3=0
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
16a+4b=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
\frac{9}{4}a+\frac{3}{2}b=-3,16a+4b=-3
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{9}{4}a+\frac{3}{2}b=-3
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
\frac{9}{4}a=-\frac{3}{2}b-3
Subtract \frac{3b}{2} from both sides of the equation.
a=\frac{4}{9}\left(-\frac{3}{2}b-3\right)
Divide both sides of the equation by \frac{9}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=-\frac{2}{3}b-\frac{4}{3}
Multiply \frac{4}{9} times -\frac{3b}{2}-3.
16\left(-\frac{2}{3}b-\frac{4}{3}\right)+4b=-3
Substitute \frac{-2b-4}{3} for a in the other equation, 16a+4b=-3.
-\frac{32}{3}b-\frac{64}{3}+4b=-3
Multiply 16 times \frac{-2b-4}{3}.
-\frac{20}{3}b-\frac{64}{3}=-3
Add -\frac{32b}{3} to 4b.
-\frac{20}{3}b=\frac{55}{3}
Add \frac{64}{3} to both sides of the equation.
b=-\frac{11}{4}
Divide both sides of the equation by -\frac{20}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=-\frac{2}{3}\left(-\frac{11}{4}\right)-\frac{4}{3}
Substitute -\frac{11}{4} for b in a=-\frac{2}{3}b-\frac{4}{3}. Because the resulting equation contains only one variable, you can solve for a directly.
a=\frac{11}{6}-\frac{4}{3}
Multiply -\frac{2}{3} times -\frac{11}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
a=\frac{1}{2}
Add -\frac{4}{3} to \frac{11}{6} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
a=\frac{1}{2},b=-\frac{11}{4}
The system is now solved.
\frac{9}{4}a+\frac{3}{2}b+3=0
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
\frac{9}{4}a+\frac{3}{2}b=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
16a+4b+3=0
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
16a+4b=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
\frac{9}{4}a+\frac{3}{2}b=-3,16a+4b=-3
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}\frac{9}{4}&\frac{3}{2}\\16&4\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-3\\-3\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}\frac{9}{4}&\frac{3}{2}\\16&4\end{matrix}\right))\left(\begin{matrix}\frac{9}{4}&\frac{3}{2}\\16&4\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{9}{4}&\frac{3}{2}\\16&4\end{matrix}\right))\left(\begin{matrix}-3\\-3\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{9}{4}&\frac{3}{2}\\16&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{9}{4}&\frac{3}{2}\\16&4\end{matrix}\right))\left(\begin{matrix}-3\\-3\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{9}{4}&\frac{3}{2}\\16&4\end{matrix}\right))\left(\begin{matrix}-3\\-3\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{4}{\frac{9}{4}\times 4-\frac{3}{2}\times 16}&-\frac{\frac{3}{2}}{\frac{9}{4}\times 4-\frac{3}{2}\times 16}\\-\frac{16}{\frac{9}{4}\times 4-\frac{3}{2}\times 16}&\frac{\frac{9}{4}}{\frac{9}{4}\times 4-\frac{3}{2}\times 16}\end{matrix}\right)\left(\begin{matrix}-3\\-3\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{15}&\frac{1}{10}\\\frac{16}{15}&-\frac{3}{20}\end{matrix}\right)\left(\begin{matrix}-3\\-3\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{15}\left(-3\right)+\frac{1}{10}\left(-3\right)\\\frac{16}{15}\left(-3\right)-\frac{3}{20}\left(-3\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\-\frac{11}{4}\end{matrix}\right)
Do the arithmetic.
a=\frac{1}{2},b=-\frac{11}{4}
Extract the matrix elements a and b.
\frac{9}{4}a+\frac{3}{2}b+3=0
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
\frac{9}{4}a+\frac{3}{2}b=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
16a+4b+3=0
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
16a+4b=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
\frac{9}{4}a+\frac{3}{2}b=-3,16a+4b=-3
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
16\times \frac{9}{4}a+16\times \frac{3}{2}b=16\left(-3\right),\frac{9}{4}\times 16a+\frac{9}{4}\times 4b=\frac{9}{4}\left(-3\right)
To make \frac{9a}{4} and 16a equal, multiply all terms on each side of the first equation by 16 and all terms on each side of the second by \frac{9}{4}.
36a+24b=-48,36a+9b=-\frac{27}{4}
Simplify.
36a-36a+24b-9b=-48+\frac{27}{4}
Subtract 36a+9b=-\frac{27}{4} from 36a+24b=-48 by subtracting like terms on each side of the equal sign.
24b-9b=-48+\frac{27}{4}
Add 36a to -36a. Terms 36a and -36a cancel out, leaving an equation with only one variable that can be solved.
15b=-48+\frac{27}{4}
Add 24b to -9b.
15b=-\frac{165}{4}
Add -48 to \frac{27}{4}.
b=-\frac{11}{4}
Divide both sides by 15.
16a+4\left(-\frac{11}{4}\right)=-3
Substitute -\frac{11}{4} for b in 16a+4b=-3. Because the resulting equation contains only one variable, you can solve for a directly.
16a-11=-3
Multiply 4 times -\frac{11}{4}.
16a=8
Add 11 to both sides of the equation.
a=\frac{1}{2}
Divide both sides by 16.
a=\frac{1}{2},b=-\frac{11}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}