Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

-2x+5y+z=12 -5x-6y-2z=20 -4x-5y+6z=-3
Reorder the equations.
z=2x-5y+12
Solve -2x+5y+z=12 for z.
-5x-6y-2\left(2x-5y+12\right)=20 -4x-5y+6\left(2x-5y+12\right)=-3
Substitute 2x-5y+12 for z in the second and third equation.
y=\frac{9}{4}x+11 x=-\frac{75}{8}+\frac{35}{8}y
Solve these equations for y and x respectively.
x=-\frac{75}{8}+\frac{35}{8}\left(\frac{9}{4}x+11\right)
Substitute \frac{9}{4}x+11 for y in the equation x=-\frac{75}{8}+\frac{35}{8}y.
x=-\frac{1240}{283}
Solve x=-\frac{75}{8}+\frac{35}{8}\left(\frac{9}{4}x+11\right) for x.
y=\frac{9}{4}\left(-\frac{1240}{283}\right)+11
Substitute -\frac{1240}{283} for x in the equation y=\frac{9}{4}x+11.
y=\frac{323}{283}
Calculate y from y=\frac{9}{4}\left(-\frac{1240}{283}\right)+11.
z=2\left(-\frac{1240}{283}\right)-5\times \frac{323}{283}+12
Substitute \frac{323}{283} for y and -\frac{1240}{283} for x in the equation z=2x-5y+12.
z=-\frac{699}{283}
Calculate z from z=2\left(-\frac{1240}{283}\right)-5\times \frac{323}{283}+12.
x=-\frac{1240}{283} y=\frac{323}{283} z=-\frac{699}{283}
The system is now solved.