\left\{ \begin{array} { l } { - 3 x + 20 y = 180 } \\ { x + 4 y = 152 } \end{array} \right.
Solve for x, y
x = \frac{145}{2} = 72\frac{1}{2} = 72.5
y = \frac{159}{8} = 19\frac{7}{8} = 19.875
Graph
Share
Copied to clipboard
-3x+20y=180,x+4y=152
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-3x+20y=180
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
-3x=-20y+180
Subtract 20y from both sides of the equation.
x=-\frac{1}{3}\left(-20y+180\right)
Divide both sides by -3.
x=\frac{20}{3}y-60
Multiply -\frac{1}{3} times -20y+180.
\frac{20}{3}y-60+4y=152
Substitute -60+\frac{20y}{3} for x in the other equation, x+4y=152.
\frac{32}{3}y-60=152
Add \frac{20y}{3} to 4y.
\frac{32}{3}y=212
Add 60 to both sides of the equation.
y=\frac{159}{8}
Divide both sides of the equation by \frac{32}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{20}{3}\times \frac{159}{8}-60
Substitute \frac{159}{8} for y in x=\frac{20}{3}y-60. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{265}{2}-60
Multiply \frac{20}{3} times \frac{159}{8} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{145}{2}
Add -60 to \frac{265}{2}.
x=\frac{145}{2},y=\frac{159}{8}
The system is now solved.
-3x+20y=180,x+4y=152
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-3&20\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}180\\152\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-3&20\\1&4\end{matrix}\right))\left(\begin{matrix}-3&20\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&20\\1&4\end{matrix}\right))\left(\begin{matrix}180\\152\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-3&20\\1&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&20\\1&4\end{matrix}\right))\left(\begin{matrix}180\\152\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&20\\1&4\end{matrix}\right))\left(\begin{matrix}180\\152\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{-3\times 4-20}&-\frac{20}{-3\times 4-20}\\-\frac{1}{-3\times 4-20}&-\frac{3}{-3\times 4-20}\end{matrix}\right)\left(\begin{matrix}180\\152\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}&\frac{5}{8}\\\frac{1}{32}&\frac{3}{32}\end{matrix}\right)\left(\begin{matrix}180\\152\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}\times 180+\frac{5}{8}\times 152\\\frac{1}{32}\times 180+\frac{3}{32}\times 152\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{145}{2}\\\frac{159}{8}\end{matrix}\right)
Do the arithmetic.
x=\frac{145}{2},y=\frac{159}{8}
Extract the matrix elements x and y.
-3x+20y=180,x+4y=152
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-3x+20y=180,-3x-3\times 4y=-3\times 152
To make -3x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by -3.
-3x+20y=180,-3x-12y=-456
Simplify.
-3x+3x+20y+12y=180+456
Subtract -3x-12y=-456 from -3x+20y=180 by subtracting like terms on each side of the equal sign.
20y+12y=180+456
Add -3x to 3x. Terms -3x and 3x cancel out, leaving an equation with only one variable that can be solved.
32y=180+456
Add 20y to 12y.
32y=636
Add 180 to 456.
y=\frac{159}{8}
Divide both sides by 32.
x+4\times \frac{159}{8}=152
Substitute \frac{159}{8} for y in x+4y=152. Because the resulting equation contains only one variable, you can solve for x directly.
x+\frac{159}{2}=152
Multiply 4 times \frac{159}{8}.
x=\frac{145}{2}
Subtract \frac{159}{2} from both sides of the equation.
x=\frac{145}{2},y=\frac{159}{8}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}