Skip to main content
Solve for y, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-13y+11x=-163,7y-8x=94
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-13y+11x=-163
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
-13y=-11x-163
Subtract 11x from both sides of the equation.
y=-\frac{1}{13}\left(-11x-163\right)
Divide both sides by -13.
y=\frac{11}{13}x+\frac{163}{13}
Multiply -\frac{1}{13} times -11x-163.
7\left(\frac{11}{13}x+\frac{163}{13}\right)-8x=94
Substitute \frac{11x+163}{13} for y in the other equation, 7y-8x=94.
\frac{77}{13}x+\frac{1141}{13}-8x=94
Multiply 7 times \frac{11x+163}{13}.
-\frac{27}{13}x+\frac{1141}{13}=94
Add \frac{77x}{13} to -8x.
-\frac{27}{13}x=\frac{81}{13}
Subtract \frac{1141}{13} from both sides of the equation.
x=-3
Divide both sides of the equation by -\frac{27}{13}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{11}{13}\left(-3\right)+\frac{163}{13}
Substitute -3 for x in y=\frac{11}{13}x+\frac{163}{13}. Because the resulting equation contains only one variable, you can solve for y directly.
y=\frac{-33+163}{13}
Multiply \frac{11}{13} times -3.
y=10
Add \frac{163}{13} to -\frac{33}{13} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=10,x=-3
The system is now solved.
-13y+11x=-163,7y-8x=94
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-13&11\\7&-8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-163\\94\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-13&11\\7&-8\end{matrix}\right))\left(\begin{matrix}-13&11\\7&-8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-13&11\\7&-8\end{matrix}\right))\left(\begin{matrix}-163\\94\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-13&11\\7&-8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-13&11\\7&-8\end{matrix}\right))\left(\begin{matrix}-163\\94\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-13&11\\7&-8\end{matrix}\right))\left(\begin{matrix}-163\\94\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{-13\left(-8\right)-11\times 7}&-\frac{11}{-13\left(-8\right)-11\times 7}\\-\frac{7}{-13\left(-8\right)-11\times 7}&-\frac{13}{-13\left(-8\right)-11\times 7}\end{matrix}\right)\left(\begin{matrix}-163\\94\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{27}&-\frac{11}{27}\\-\frac{7}{27}&-\frac{13}{27}\end{matrix}\right)\left(\begin{matrix}-163\\94\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{27}\left(-163\right)-\frac{11}{27}\times 94\\-\frac{7}{27}\left(-163\right)-\frac{13}{27}\times 94\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}10\\-3\end{matrix}\right)
Do the arithmetic.
y=10,x=-3
Extract the matrix elements y and x.
-13y+11x=-163,7y-8x=94
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
7\left(-13\right)y+7\times 11x=7\left(-163\right),-13\times 7y-13\left(-8\right)x=-13\times 94
To make -13y and 7y equal, multiply all terms on each side of the first equation by 7 and all terms on each side of the second by -13.
-91y+77x=-1141,-91y+104x=-1222
Simplify.
-91y+91y+77x-104x=-1141+1222
Subtract -91y+104x=-1222 from -91y+77x=-1141 by subtracting like terms on each side of the equal sign.
77x-104x=-1141+1222
Add -91y to 91y. Terms -91y and 91y cancel out, leaving an equation with only one variable that can be solved.
-27x=-1141+1222
Add 77x to -104x.
-27x=81
Add -1141 to 1222.
x=-3
Divide both sides by -27.
7y-8\left(-3\right)=94
Substitute -3 for x in 7y-8x=94. Because the resulting equation contains only one variable, you can solve for y directly.
7y+24=94
Multiply -8 times -3.
7y=70
Subtract 24 from both sides of the equation.
y=10
Divide both sides by 7.
y=10,x=-3
The system is now solved.