Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{3}x+y=2,y^{2}+x^{2}=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\sqrt{3}x+y=2
Solve \sqrt{3}x+y=2 for x by isolating x on the left hand side of the equal sign.
\sqrt{3}x=-y+2
Subtract y from both sides of the equation.
x=\left(-\frac{\sqrt{3}}{3}\right)y+\frac{2\sqrt{3}}{3}
Divide both sides by \sqrt{3}.
y^{2}+\left(\left(-\frac{\sqrt{3}}{3}\right)y+\frac{2\sqrt{3}}{3}\right)^{2}=1
Substitute \left(-\frac{\sqrt{3}}{3}\right)y+\frac{2\sqrt{3}}{3} for x in the other equation, y^{2}+x^{2}=1.
y^{2}+\left(-\frac{\sqrt{3}}{3}\right)^{2}y^{2}+2\left(-\frac{\sqrt{3}}{3}\right)\times \frac{2\sqrt{3}}{3}y+\left(\frac{2\sqrt{3}}{3}\right)^{2}=1
Square \left(-\frac{\sqrt{3}}{3}\right)y+\frac{2\sqrt{3}}{3}.
\left(\left(-\frac{\sqrt{3}}{3}\right)^{2}+1\right)y^{2}+2\left(-\frac{\sqrt{3}}{3}\right)\times \frac{2\sqrt{3}}{3}y+\left(\frac{2\sqrt{3}}{3}\right)^{2}=1
Add y^{2} to \left(-\frac{\sqrt{3}}{3}\right)^{2}y^{2}.
\left(\left(-\frac{\sqrt{3}}{3}\right)^{2}+1\right)y^{2}+2\left(-\frac{\sqrt{3}}{3}\right)\times \frac{2\sqrt{3}}{3}y+\left(\frac{2\sqrt{3}}{3}\right)^{2}-1=0
Subtract 1 from both sides of the equation.
y=\frac{-2\left(-\frac{\sqrt{3}}{3}\right)\times \frac{2\sqrt{3}}{3}±\sqrt{\left(2\left(-\frac{\sqrt{3}}{3}\right)\times \frac{2\sqrt{3}}{3}\right)^{2}-4\left(\left(-\frac{\sqrt{3}}{3}\right)^{2}+1\right)\times \frac{1}{3}}}{2\left(\left(-\frac{\sqrt{3}}{3}\right)^{2}+1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\frac{\sqrt{3}}{3}\right)^{2} for a, 1\times 2\left(-\frac{\sqrt{3}}{3}\right)\times \frac{2\sqrt{3}}{3} for b, and \frac{1}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-2\left(-\frac{\sqrt{3}}{3}\right)\times \frac{2\sqrt{3}}{3}±\sqrt{\frac{16}{9}-4\left(\left(-\frac{\sqrt{3}}{3}\right)^{2}+1\right)\times \frac{1}{3}}}{2\left(\left(-\frac{\sqrt{3}}{3}\right)^{2}+1\right)}
Square 1\times 2\left(-\frac{\sqrt{3}}{3}\right)\times \frac{2\sqrt{3}}{3}.
y=\frac{-2\left(-\frac{\sqrt{3}}{3}\right)\times \frac{2\sqrt{3}}{3}±\sqrt{\frac{16}{9}-\frac{16}{3}\times \frac{1}{3}}}{2\left(\left(-\frac{\sqrt{3}}{3}\right)^{2}+1\right)}
Multiply -4 times 1+1\left(-\frac{\sqrt{3}}{3}\right)^{2}.
y=\frac{-2\left(-\frac{\sqrt{3}}{3}\right)\times \frac{2\sqrt{3}}{3}±\sqrt{\frac{16-16}{9}}}{2\left(\left(-\frac{\sqrt{3}}{3}\right)^{2}+1\right)}
Multiply -\frac{16}{3} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{-2\left(-\frac{\sqrt{3}}{3}\right)\times \frac{2\sqrt{3}}{3}±\sqrt{0}}{2\left(\left(-\frac{\sqrt{3}}{3}\right)^{2}+1\right)}
Add \frac{16}{9} to -\frac{16}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=-\frac{2\left(-\frac{\sqrt{3}}{3}\right)\times \frac{2\sqrt{3}}{3}}{2\left(\left(-\frac{\sqrt{3}}{3}\right)^{2}+1\right)}
Take the square root of 0.
y=\frac{\frac{4}{3}}{2\left(\left(-\frac{\sqrt{3}}{3}\right)^{2}+1\right)}
The opposite of 1\times 2\left(-\frac{\sqrt{3}}{3}\right)\times \frac{2\sqrt{3}}{3} is \frac{4}{3}.
y=\frac{\frac{4}{3}}{\frac{8}{3}}
Multiply 2 times 1+1\left(-\frac{\sqrt{3}}{3}\right)^{2}.
y=\frac{1}{2}
Divide \frac{4}{3} by \frac{8}{3} by multiplying \frac{4}{3} by the reciprocal of \frac{8}{3}.
x=\left(-\frac{\sqrt{3}}{3}\right)\times \frac{1}{2}+\frac{2\sqrt{3}}{3}
There are two solutions for y: \frac{1}{2} and \frac{1}{2}. Substitute \frac{1}{2} for y in the equation x=\left(-\frac{\sqrt{3}}{3}\right)y+\frac{2\sqrt{3}}{3} to find the corresponding solution for x that satisfies both equations.
x=-\frac{\sqrt{3}}{2\times 3}+\frac{2\sqrt{3}}{3}
Multiply -\frac{\sqrt{3}}{3} times \frac{1}{2}.
x=-\frac{\sqrt{3}}{2\times 3}+\frac{2\sqrt{3}}{3},y=\frac{1}{2}\text{ or }x=-\frac{\sqrt{3}}{2\times 3}+\frac{2\sqrt{3}}{3},y=\frac{1}{2}
The system is now solved.