Skip to main content
Solve for y, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

y=2\left(x-y\right)
Consider the first equation. Multiply both sides of the equation by 4, the least common multiple of 4,2.
y=2x-2y
Use the distributive property to multiply 2 by x-y.
y-2x=-2y
Subtract 2x from both sides.
y-2x+2y=0
Add 2y to both sides.
3y-2x=0
Combine y and 2y to get 3y.
3y-2x=0,3y-x=12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3y-2x=0
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
3y=2x
Add 2x to both sides of the equation.
y=\frac{1}{3}\times 2x
Divide both sides by 3.
y=\frac{2}{3}x
Multiply \frac{1}{3} times 2x.
3\times \frac{2}{3}x-x=12
Substitute \frac{2x}{3} for y in the other equation, 3y-x=12.
2x-x=12
Multiply 3 times \frac{2x}{3}.
x=12
Add 2x to -x.
y=\frac{2}{3}\times 12
Substitute 12 for x in y=\frac{2}{3}x. Because the resulting equation contains only one variable, you can solve for y directly.
y=8
Multiply \frac{2}{3} times 12.
y=8,x=12
The system is now solved.
y=2\left(x-y\right)
Consider the first equation. Multiply both sides of the equation by 4, the least common multiple of 4,2.
y=2x-2y
Use the distributive property to multiply 2 by x-y.
y-2x=-2y
Subtract 2x from both sides.
y-2x+2y=0
Add 2y to both sides.
3y-2x=0
Combine y and 2y to get 3y.
3y-2x=0,3y-x=12
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\12\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\12\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&-2\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\12\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\12\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-2\times 3\right)}&-\frac{-2}{3\left(-1\right)-\left(-2\times 3\right)}\\-\frac{3}{3\left(-1\right)-\left(-2\times 3\right)}&\frac{3}{3\left(-1\right)-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}0\\12\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{2}{3}\\-1&1\end{matrix}\right)\left(\begin{matrix}0\\12\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 12\\12\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}8\\12\end{matrix}\right)
Do the arithmetic.
y=8,x=12
Extract the matrix elements y and x.
y=2\left(x-y\right)
Consider the first equation. Multiply both sides of the equation by 4, the least common multiple of 4,2.
y=2x-2y
Use the distributive property to multiply 2 by x-y.
y-2x=-2y
Subtract 2x from both sides.
y-2x+2y=0
Add 2y to both sides.
3y-2x=0
Combine y and 2y to get 3y.
3y-2x=0,3y-x=12
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3y-3y-2x+x=-12
Subtract 3y-x=12 from 3y-2x=0 by subtracting like terms on each side of the equal sign.
-2x+x=-12
Add 3y to -3y. Terms 3y and -3y cancel out, leaving an equation with only one variable that can be solved.
-x=-12
Add -2x to x.
x=12
Divide both sides by -1.
3y-12=12
Substitute 12 for x in 3y-x=12. Because the resulting equation contains only one variable, you can solve for y directly.
3y=24
Add 12 to both sides of the equation.
y=8
Divide both sides by 3.
y=8,x=12
The system is now solved.