\left\{ \begin{array} { l } { \frac { x } { 8 } - \frac { 1 } { 5 } = - \frac { 1 } { 10 } } \\ { \frac { x } { 5 } - \frac { y } { 4 } = - \frac { 69 } { 40 } } \end{array} \right.
Solve for x, y
x=\frac{4}{5}=0.8
y = \frac{377}{50} = 7\frac{27}{50} = 7.54
Graph
Share
Copied to clipboard
5x-8=-4
Consider the first equation. Multiply both sides of the equation by 40, the least common multiple of 8,5,10.
5x=-4+8
Add 8 to both sides.
5x=4
Add -4 and 8 to get 4.
x=\frac{4}{5}
Divide both sides by 5.
\frac{\frac{4}{5}}{5}-\frac{y}{4}=-\frac{69}{40}
Consider the second equation. Insert the known values of variables into the equation.
8\times \frac{4}{5}-10y=-69
Multiply both sides of the equation by 40, the least common multiple of 5,4,40.
\frac{32}{5}-10y=-69
Multiply 8 and \frac{4}{5} to get \frac{32}{5}.
-10y=-69-\frac{32}{5}
Subtract \frac{32}{5} from both sides.
-10y=-\frac{377}{5}
Subtract \frac{32}{5} from -69 to get -\frac{377}{5}.
y=\frac{-\frac{377}{5}}{-10}
Divide both sides by -10.
y=\frac{-377}{5\left(-10\right)}
Express \frac{-\frac{377}{5}}{-10} as a single fraction.
y=\frac{-377}{-50}
Multiply 5 and -10 to get -50.
y=\frac{377}{50}
Fraction \frac{-377}{-50} can be simplified to \frac{377}{50} by removing the negative sign from both the numerator and the denominator.
x=\frac{4}{5} y=\frac{377}{50}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}