Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{60}x+\frac{1}{30}y=30,\frac{1}{50}x+\frac{1}{40}y=6
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{1}{60}x+\frac{1}{30}y=30
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
\frac{1}{60}x=-\frac{1}{30}y+30
Subtract \frac{y}{30} from both sides of the equation.
x=60\left(-\frac{1}{30}y+30\right)
Multiply both sides by 60.
x=-2y+1800
Multiply 60 times -\frac{y}{30}+30.
\frac{1}{50}\left(-2y+1800\right)+\frac{1}{40}y=6
Substitute -2y+1800 for x in the other equation, \frac{1}{50}x+\frac{1}{40}y=6.
-\frac{1}{25}y+36+\frac{1}{40}y=6
Multiply \frac{1}{50} times -2y+1800.
-\frac{3}{200}y+36=6
Add -\frac{y}{25} to \frac{y}{40}.
-\frac{3}{200}y=-30
Subtract 36 from both sides of the equation.
y=2000
Divide both sides of the equation by -\frac{3}{200}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-2\times 2000+1800
Substitute 2000 for y in x=-2y+1800. Because the resulting equation contains only one variable, you can solve for x directly.
x=-4000+1800
Multiply -2 times 2000.
x=-2200
Add 1800 to -4000.
x=-2200,y=2000
The system is now solved.
\frac{1}{60}x+\frac{1}{30}y=30,\frac{1}{50}x+\frac{1}{40}y=6
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}\frac{1}{60}&\frac{1}{30}\\\frac{1}{50}&\frac{1}{40}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\6\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}\frac{1}{60}&\frac{1}{30}\\\frac{1}{50}&\frac{1}{40}\end{matrix}\right))\left(\begin{matrix}\frac{1}{60}&\frac{1}{30}\\\frac{1}{50}&\frac{1}{40}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{60}&\frac{1}{30}\\\frac{1}{50}&\frac{1}{40}\end{matrix}\right))\left(\begin{matrix}30\\6\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{1}{60}&\frac{1}{30}\\\frac{1}{50}&\frac{1}{40}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{60}&\frac{1}{30}\\\frac{1}{50}&\frac{1}{40}\end{matrix}\right))\left(\begin{matrix}30\\6\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{60}&\frac{1}{30}\\\frac{1}{50}&\frac{1}{40}\end{matrix}\right))\left(\begin{matrix}30\\6\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{40}}{\frac{1}{60}\times \frac{1}{40}-\frac{1}{30}\times \frac{1}{50}}&-\frac{\frac{1}{30}}{\frac{1}{60}\times \frac{1}{40}-\frac{1}{30}\times \frac{1}{50}}\\-\frac{\frac{1}{50}}{\frac{1}{60}\times \frac{1}{40}-\frac{1}{30}\times \frac{1}{50}}&\frac{\frac{1}{60}}{\frac{1}{60}\times \frac{1}{40}-\frac{1}{30}\times \frac{1}{50}}\end{matrix}\right)\left(\begin{matrix}30\\6\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-100&\frac{400}{3}\\80&-\frac{200}{3}\end{matrix}\right)\left(\begin{matrix}30\\6\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-100\times 30+\frac{400}{3}\times 6\\80\times 30-\frac{200}{3}\times 6\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2200\\2000\end{matrix}\right)
Do the arithmetic.
x=-2200,y=2000
Extract the matrix elements x and y.
\frac{1}{60}x+\frac{1}{30}y=30,\frac{1}{50}x+\frac{1}{40}y=6
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\frac{1}{50}\times \frac{1}{60}x+\frac{1}{50}\times \frac{1}{30}y=\frac{1}{50}\times 30,\frac{1}{60}\times \frac{1}{50}x+\frac{1}{60}\times \frac{1}{40}y=\frac{1}{60}\times 6
To make \frac{x}{60} and \frac{x}{50} equal, multiply all terms on each side of the first equation by \frac{1}{50} and all terms on each side of the second by \frac{1}{60}.
\frac{1}{3000}x+\frac{1}{1500}y=\frac{3}{5},\frac{1}{3000}x+\frac{1}{2400}y=\frac{1}{10}
Simplify.
\frac{1}{3000}x-\frac{1}{3000}x+\frac{1}{1500}y-\frac{1}{2400}y=\frac{3}{5}-\frac{1}{10}
Subtract \frac{1}{3000}x+\frac{1}{2400}y=\frac{1}{10} from \frac{1}{3000}x+\frac{1}{1500}y=\frac{3}{5} by subtracting like terms on each side of the equal sign.
\frac{1}{1500}y-\frac{1}{2400}y=\frac{3}{5}-\frac{1}{10}
Add \frac{x}{3000} to -\frac{x}{3000}. Terms \frac{x}{3000} and -\frac{x}{3000} cancel out, leaving an equation with only one variable that can be solved.
\frac{1}{4000}y=\frac{3}{5}-\frac{1}{10}
Add \frac{y}{1500} to -\frac{y}{2400}.
\frac{1}{4000}y=\frac{1}{2}
Add \frac{3}{5} to -\frac{1}{10} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=2000
Multiply both sides by 4000.
\frac{1}{50}x+\frac{1}{40}\times 2000=6
Substitute 2000 for y in \frac{1}{50}x+\frac{1}{40}y=6. Because the resulting equation contains only one variable, you can solve for x directly.
\frac{1}{50}x+50=6
Multiply \frac{1}{40} times 2000.
\frac{1}{50}x=-44
Subtract 50 from both sides of the equation.
x=-2200
Multiply both sides by 50.
x=-2200,y=2000
The system is now solved.