\left\{ \begin{array} { l } { \frac { x } { 2 } + \frac { y } { 3 } = \frac { 13 } { 2 } } \\ { \frac { x } { 3 } - \frac { y } { 4 } = \frac { 3 } { 2 } } \end{array} \right.
Solve for x, y
x=9
y=6
Graph
Share
Copied to clipboard
3x+2y=39
Consider the first equation. Multiply both sides of the equation by 6, the least common multiple of 2,3.
4x-3y=18
Consider the second equation. Multiply both sides of the equation by 12, the least common multiple of 3,4,2.
3x+2y=39,4x-3y=18
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+2y=39
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-2y+39
Subtract 2y from both sides of the equation.
x=\frac{1}{3}\left(-2y+39\right)
Divide both sides by 3.
x=-\frac{2}{3}y+13
Multiply \frac{1}{3} times -2y+39.
4\left(-\frac{2}{3}y+13\right)-3y=18
Substitute -\frac{2y}{3}+13 for x in the other equation, 4x-3y=18.
-\frac{8}{3}y+52-3y=18
Multiply 4 times -\frac{2y}{3}+13.
-\frac{17}{3}y+52=18
Add -\frac{8y}{3} to -3y.
-\frac{17}{3}y=-34
Subtract 52 from both sides of the equation.
y=6
Divide both sides of the equation by -\frac{17}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{2}{3}\times 6+13
Substitute 6 for y in x=-\frac{2}{3}y+13. Because the resulting equation contains only one variable, you can solve for x directly.
x=-4+13
Multiply -\frac{2}{3} times 6.
x=9
Add 13 to -4.
x=9,y=6
The system is now solved.
3x+2y=39
Consider the first equation. Multiply both sides of the equation by 6, the least common multiple of 2,3.
4x-3y=18
Consider the second equation. Multiply both sides of the equation by 12, the least common multiple of 3,4,2.
3x+2y=39,4x-3y=18
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&2\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}39\\18\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&2\\4&-3\end{matrix}\right))\left(\begin{matrix}3&2\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&-3\end{matrix}\right))\left(\begin{matrix}39\\18\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&2\\4&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&-3\end{matrix}\right))\left(\begin{matrix}39\\18\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&-3\end{matrix}\right))\left(\begin{matrix}39\\18\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{3\left(-3\right)-2\times 4}&-\frac{2}{3\left(-3\right)-2\times 4}\\-\frac{4}{3\left(-3\right)-2\times 4}&\frac{3}{3\left(-3\right)-2\times 4}\end{matrix}\right)\left(\begin{matrix}39\\18\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}&\frac{2}{17}\\\frac{4}{17}&-\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}39\\18\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}\times 39+\frac{2}{17}\times 18\\\frac{4}{17}\times 39-\frac{3}{17}\times 18\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\6\end{matrix}\right)
Do the arithmetic.
x=9,y=6
Extract the matrix elements x and y.
3x+2y=39
Consider the first equation. Multiply both sides of the equation by 6, the least common multiple of 2,3.
4x-3y=18
Consider the second equation. Multiply both sides of the equation by 12, the least common multiple of 3,4,2.
3x+2y=39,4x-3y=18
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4\times 3x+4\times 2y=4\times 39,3\times 4x+3\left(-3\right)y=3\times 18
To make 3x and 4x equal, multiply all terms on each side of the first equation by 4 and all terms on each side of the second by 3.
12x+8y=156,12x-9y=54
Simplify.
12x-12x+8y+9y=156-54
Subtract 12x-9y=54 from 12x+8y=156 by subtracting like terms on each side of the equal sign.
8y+9y=156-54
Add 12x to -12x. Terms 12x and -12x cancel out, leaving an equation with only one variable that can be solved.
17y=156-54
Add 8y to 9y.
17y=102
Add 156 to -54.
y=6
Divide both sides by 17.
4x-3\times 6=18
Substitute 6 for y in 4x-3y=18. Because the resulting equation contains only one variable, you can solve for x directly.
4x-18=18
Multiply -3 times 6.
4x=36
Add 18 to both sides of the equation.
x=9
Divide both sides by 4.
x=9,y=6
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}