Skip to main content
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-y^{2}=2
Consider the first equation. Multiply both sides by 2.
3x+2y=1
Consider the second equation. Add 1 to both sides. Anything plus zero gives itself.
3x=-2y+1
Subtract 2y from both sides of the equation.
x=-\frac{2}{3}y+\frac{1}{3}
Divide both sides by 3.
-y^{2}+\left(-\frac{2}{3}y+\frac{1}{3}\right)^{2}=2
Substitute -\frac{2}{3}y+\frac{1}{3} for x in the other equation, -y^{2}+x^{2}=2.
-y^{2}+\frac{4}{9}y^{2}-\frac{4}{9}y+\frac{1}{9}=2
Square -\frac{2}{3}y+\frac{1}{3}.
-\frac{5}{9}y^{2}-\frac{4}{9}y+\frac{1}{9}=2
Add -y^{2} to \frac{4}{9}y^{2}.
-\frac{5}{9}y^{2}-\frac{4}{9}y-\frac{17}{9}=0
Subtract 2 from both sides of the equation.
y=\frac{-\left(-\frac{4}{9}\right)±\sqrt{\left(-\frac{4}{9}\right)^{2}-4\left(-\frac{5}{9}\right)\left(-\frac{17}{9}\right)}}{2\left(-\frac{5}{9}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1+1\left(-\frac{2}{3}\right)^{2} for a, 1\times \frac{1}{3}\left(-\frac{2}{3}\right)\times 2 for b, and -\frac{17}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{4}{9}\right)±\sqrt{\frac{16}{81}-4\left(-\frac{5}{9}\right)\left(-\frac{17}{9}\right)}}{2\left(-\frac{5}{9}\right)}
Square 1\times \frac{1}{3}\left(-\frac{2}{3}\right)\times 2.
y=\frac{-\left(-\frac{4}{9}\right)±\sqrt{\frac{16}{81}+\frac{20}{9}\left(-\frac{17}{9}\right)}}{2\left(-\frac{5}{9}\right)}
Multiply -4 times -1+1\left(-\frac{2}{3}\right)^{2}.
y=\frac{-\left(-\frac{4}{9}\right)±\sqrt{\frac{16-340}{81}}}{2\left(-\frac{5}{9}\right)}
Multiply \frac{20}{9} times -\frac{17}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{4}{9}\right)±\sqrt{-4}}{2\left(-\frac{5}{9}\right)}
Add \frac{16}{81} to -\frac{340}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{4}{9}\right)±2i}{2\left(-\frac{5}{9}\right)}
Take the square root of -4.
y=\frac{\frac{4}{9}±2i}{2\left(-\frac{5}{9}\right)}
The opposite of 1\times \frac{1}{3}\left(-\frac{2}{3}\right)\times 2 is \frac{4}{9}.
y=\frac{\frac{4}{9}±2i}{-\frac{10}{9}}
Multiply 2 times -1+1\left(-\frac{2}{3}\right)^{2}.
y=\frac{\frac{4}{9}+2i}{-\frac{10}{9}}
Now solve the equation y=\frac{\frac{4}{9}±2i}{-\frac{10}{9}} when ± is plus. Add \frac{4}{9} to 2i.
y=-\frac{2}{5}-\frac{9}{5}i
Divide \frac{4}{9}+2i by -\frac{10}{9} by multiplying \frac{4}{9}+2i by the reciprocal of -\frac{10}{9}.
y=\frac{\frac{4}{9}-2i}{-\frac{10}{9}}
Now solve the equation y=\frac{\frac{4}{9}±2i}{-\frac{10}{9}} when ± is minus. Subtract 2i from \frac{4}{9}.
y=-\frac{2}{5}+\frac{9}{5}i
Divide \frac{4}{9}-2i by -\frac{10}{9} by multiplying \frac{4}{9}-2i by the reciprocal of -\frac{10}{9}.
x=-\frac{2}{3}\left(-\frac{2}{5}-\frac{9}{5}i\right)+\frac{1}{3}
There are two solutions for y: -\frac{2}{5}-\frac{9}{5}i and -\frac{2}{5}+\frac{9}{5}i. Substitute -\frac{2}{5}-\frac{9}{5}i for y in the equation x=-\frac{2}{3}y+\frac{1}{3} to find the corresponding solution for x that satisfies both equations.
x=\frac{4}{15}+\frac{6}{5}i+\frac{1}{3}
Multiply -\frac{2}{3} times -\frac{2}{5}-\frac{9}{5}i.
x=\frac{3}{5}+\frac{6}{5}i
Add -\frac{2}{3}\left(-\frac{2}{5}-\frac{9}{5}i\right) to \frac{1}{3}.
x=-\frac{2}{3}\left(-\frac{2}{5}+\frac{9}{5}i\right)+\frac{1}{3}
Now substitute -\frac{2}{5}+\frac{9}{5}i for y in the equation x=-\frac{2}{3}y+\frac{1}{3} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{4}{15}-\frac{6}{5}i+\frac{1}{3}
Multiply -\frac{2}{3} times -\frac{2}{5}+\frac{9}{5}i.
x=\frac{3}{5}-\frac{6}{5}i
Add -\frac{2}{3}\left(-\frac{2}{5}+\frac{9}{5}i\right) to \frac{1}{3}.
x=\frac{3}{5}+\frac{6}{5}i,y=-\frac{2}{5}-\frac{9}{5}i\text{ or }x=\frac{3}{5}-\frac{6}{5}i,y=-\frac{2}{5}+\frac{9}{5}i
The system is now solved.