Skip to main content
Solve for x, y
Tick mark Image
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+2y^{2}=4
Consider the first equation. Multiply both sides of the equation by 4, the least common multiple of 4,2.
x-my=1
Consider the second equation. Subtract my from both sides.
x+\left(-m\right)y=1,2y^{2}+x^{2}=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+\left(-m\right)y=1
Solve x+\left(-m\right)y=1 for x by isolating x on the left hand side of the equal sign.
x=my+1
Subtract \left(-m\right)y from both sides of the equation.
2y^{2}+\left(my+1\right)^{2}=4
Substitute my+1 for x in the other equation, 2y^{2}+x^{2}=4.
2y^{2}+m^{2}y^{2}+2my+1=4
Square my+1.
\left(m^{2}+2\right)y^{2}+2my+1=4
Add 2y^{2} to m^{2}y^{2}.
\left(m^{2}+2\right)y^{2}+2my-3=0
Subtract 4 from both sides of the equation.
y=\frac{-2m±\sqrt{\left(2m\right)^{2}-4\left(m^{2}+2\right)\left(-3\right)}}{2\left(m^{2}+2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2+1m^{2} for a, 1\times 1\times 2m for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-2m±\sqrt{4m^{2}-4\left(m^{2}+2\right)\left(-3\right)}}{2\left(m^{2}+2\right)}
Square 1\times 1\times 2m.
y=\frac{-2m±\sqrt{4m^{2}+\left(-4m^{2}-8\right)\left(-3\right)}}{2\left(m^{2}+2\right)}
Multiply -4 times 2+1m^{2}.
y=\frac{-2m±\sqrt{4m^{2}+12m^{2}+24}}{2\left(m^{2}+2\right)}
Multiply -8-4m^{2} times -3.
y=\frac{-2m±\sqrt{16m^{2}+24}}{2\left(m^{2}+2\right)}
Add 4m^{2} to 24+12m^{2}.
y=\frac{-2m±2\sqrt{4m^{2}+6}}{2\left(m^{2}+2\right)}
Take the square root of 24+16m^{2}.
y=\frac{-2m±2\sqrt{4m^{2}+6}}{2m^{2}+4}
Multiply 2 times 2+1m^{2}.
y=\frac{2\sqrt{4m^{2}+6}-2m}{2m^{2}+4}
Now solve the equation y=\frac{-2m±2\sqrt{4m^{2}+6}}{2m^{2}+4} when ± is plus. Add -2m to 2\sqrt{6+4m^{2}}.
y=\frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}
Divide -2m+2\sqrt{6+4m^{2}} by 4+2m^{2}.
y=\frac{-2\sqrt{4m^{2}+6}-2m}{2m^{2}+4}
Now solve the equation y=\frac{-2m±2\sqrt{4m^{2}+6}}{2m^{2}+4} when ± is minus. Subtract 2\sqrt{6+4m^{2}} from -2m.
y=-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}
Divide -2m-2\sqrt{6+4m^{2}} by 4+2m^{2}.
x=m\times \frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}+1
There are two solutions for y: \frac{-m+\sqrt{6+4m^{2}}}{2+m^{2}} and -\frac{m+\sqrt{6+4m^{2}}}{2+m^{2}}. Substitute \frac{-m+\sqrt{6+4m^{2}}}{2+m^{2}} for y in the equation x=my+1 to find the corresponding solution for x that satisfies both equations.
x=\frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}m+1
Multiply m times \frac{-m+\sqrt{6+4m^{2}}}{2+m^{2}}.
x=1+\frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}m
Add m\times \frac{-m+\sqrt{6+4m^{2}}}{2+m^{2}} to 1.
x=m\left(-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}\right)+1
Now substitute -\frac{m+\sqrt{6+4m^{2}}}{2+m^{2}} for y in the equation x=my+1 and solve to find the corresponding solution for x that satisfies both equations.
x=\left(-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}\right)m+1
Multiply m times -\frac{m+\sqrt{6+4m^{2}}}{2+m^{2}}.
x=1+\left(-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}\right)m
Add m\left(-\frac{m+\sqrt{6+4m^{2}}}{2+m^{2}}\right) to 1.
x=1+\frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}m,y=\frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}\text{ or }x=1+\left(-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}\right)m,y=-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}
The system is now solved.