\left\{ \begin{array} { l } { \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 2 } = 1 } \\ { x = m y + 1 } \end{array} \right.
Solve for x, y
x=\frac{\sqrt{2}\left(-m\sqrt{2m^{2}+3}+\sqrt{2}\right)}{m^{2}+2}\text{, }y=-\frac{\sqrt{2\left(2m^{2}+3\right)}+m}{m^{2}+2}
x=\frac{\sqrt{2}\left(m\sqrt{2m^{2}+3}+\sqrt{2}\right)}{m^{2}+2}\text{, }y=\frac{\sqrt{2\left(2m^{2}+3\right)}-m}{m^{2}+2}
Solve for x, y (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{2}\left(-m\sqrt{2m^{2}+3}+\sqrt{2}\right)}{m^{2}+2}\text{, }y=-\frac{\sqrt{2\left(2m^{2}+3\right)}+m}{m^{2}+2}\text{; }x=\frac{\sqrt{2}\left(m\sqrt{2m^{2}+3}+\sqrt{2}\right)}{m^{2}+2}\text{, }y=\frac{\sqrt{2\left(2m^{2}+3\right)}-m}{m^{2}+2}\text{, }&m\neq -\sqrt{2}i\text{ and }m\neq \sqrt{2}i\\x=\frac{5}{2}=2.5\text{, }y=\frac{3}{2m}\text{, }&m=-\sqrt{2}i\text{ or }m=\sqrt{2}i\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}+2y^{2}=4
Consider the first equation. Multiply both sides of the equation by 4, the least common multiple of 4,2.
x-my=1
Consider the second equation. Subtract my from both sides.
x+\left(-m\right)y=1,2y^{2}+x^{2}=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+\left(-m\right)y=1
Solve x+\left(-m\right)y=1 for x by isolating x on the left hand side of the equal sign.
x=my+1
Subtract \left(-m\right)y from both sides of the equation.
2y^{2}+\left(my+1\right)^{2}=4
Substitute my+1 for x in the other equation, 2y^{2}+x^{2}=4.
2y^{2}+m^{2}y^{2}+2my+1=4
Square my+1.
\left(m^{2}+2\right)y^{2}+2my+1=4
Add 2y^{2} to m^{2}y^{2}.
\left(m^{2}+2\right)y^{2}+2my-3=0
Subtract 4 from both sides of the equation.
y=\frac{-2m±\sqrt{\left(2m\right)^{2}-4\left(m^{2}+2\right)\left(-3\right)}}{2\left(m^{2}+2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2+1m^{2} for a, 1\times 1\times 2m for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-2m±\sqrt{4m^{2}-4\left(m^{2}+2\right)\left(-3\right)}}{2\left(m^{2}+2\right)}
Square 1\times 1\times 2m.
y=\frac{-2m±\sqrt{4m^{2}+\left(-4m^{2}-8\right)\left(-3\right)}}{2\left(m^{2}+2\right)}
Multiply -4 times 2+1m^{2}.
y=\frac{-2m±\sqrt{4m^{2}+12m^{2}+24}}{2\left(m^{2}+2\right)}
Multiply -8-4m^{2} times -3.
y=\frac{-2m±\sqrt{16m^{2}+24}}{2\left(m^{2}+2\right)}
Add 4m^{2} to 24+12m^{2}.
y=\frac{-2m±2\sqrt{4m^{2}+6}}{2\left(m^{2}+2\right)}
Take the square root of 24+16m^{2}.
y=\frac{-2m±2\sqrt{4m^{2}+6}}{2m^{2}+4}
Multiply 2 times 2+1m^{2}.
y=\frac{2\sqrt{4m^{2}+6}-2m}{2m^{2}+4}
Now solve the equation y=\frac{-2m±2\sqrt{4m^{2}+6}}{2m^{2}+4} when ± is plus. Add -2m to 2\sqrt{6+4m^{2}}.
y=\frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}
Divide -2m+2\sqrt{6+4m^{2}} by 4+2m^{2}.
y=\frac{-2\sqrt{4m^{2}+6}-2m}{2m^{2}+4}
Now solve the equation y=\frac{-2m±2\sqrt{4m^{2}+6}}{2m^{2}+4} when ± is minus. Subtract 2\sqrt{6+4m^{2}} from -2m.
y=-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}
Divide -2m-2\sqrt{6+4m^{2}} by 4+2m^{2}.
x=m\times \frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}+1
There are two solutions for y: \frac{-m+\sqrt{6+4m^{2}}}{2+m^{2}} and -\frac{m+\sqrt{6+4m^{2}}}{2+m^{2}}. Substitute \frac{-m+\sqrt{6+4m^{2}}}{2+m^{2}} for y in the equation x=my+1 to find the corresponding solution for x that satisfies both equations.
x=\frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}m+1
Multiply m times \frac{-m+\sqrt{6+4m^{2}}}{2+m^{2}}.
x=1+\frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}m
Add m\times \frac{-m+\sqrt{6+4m^{2}}}{2+m^{2}} to 1.
x=m\left(-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}\right)+1
Now substitute -\frac{m+\sqrt{6+4m^{2}}}{2+m^{2}} for y in the equation x=my+1 and solve to find the corresponding solution for x that satisfies both equations.
x=\left(-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}\right)m+1
Multiply m times -\frac{m+\sqrt{6+4m^{2}}}{2+m^{2}}.
x=1+\left(-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}\right)m
Add m\left(-\frac{m+\sqrt{6+4m^{2}}}{2+m^{2}}\right) to 1.
x=1+\frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}m,y=\frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}\text{ or }x=1+\left(-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}\right)m,y=-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}