Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+3y^{2}=3
Consider the first equation. Multiply both sides of the equation by 3.
x+y=2,3y^{2}+x^{2}=3
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=2
Solve x+y=2 for x by isolating x on the left hand side of the equal sign.
x=-y+2
Subtract y from both sides of the equation.
3y^{2}+\left(-y+2\right)^{2}=3
Substitute -y+2 for x in the other equation, 3y^{2}+x^{2}=3.
3y^{2}+y^{2}-4y+4=3
Square -y+2.
4y^{2}-4y+4=3
Add 3y^{2} to y^{2}.
4y^{2}-4y+1=0
Subtract 3 from both sides of the equation.
y=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3+1\left(-1\right)^{2} for a, 1\times 2\left(-1\right)\times 2 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2\times 4}
Square 1\times 2\left(-1\right)\times 2.
y=\frac{-\left(-4\right)±\sqrt{16-16}}{2\times 4}
Multiply -4 times 3+1\left(-1\right)^{2}.
y=\frac{-\left(-4\right)±\sqrt{0}}{2\times 4}
Add 16 to -16.
y=-\frac{-4}{2\times 4}
Take the square root of 0.
y=\frac{4}{2\times 4}
The opposite of 1\times 2\left(-1\right)\times 2 is 4.
y=\frac{4}{8}
Multiply 2 times 3+1\left(-1\right)^{2}.
y=\frac{1}{2}
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
x=-\frac{1}{2}+2
There are two solutions for y: \frac{1}{2} and \frac{1}{2}. Substitute \frac{1}{2} for y in the equation x=-y+2 to find the corresponding solution for x that satisfies both equations.
x=\frac{3}{2}
Add -\frac{1}{2} to 2.
x=\frac{3}{2},y=\frac{1}{2}\text{ or }x=\frac{3}{2},y=\frac{1}{2}
The system is now solved.