\left\{ \begin{array} { l } { \frac { x + y } { 6 } + \frac { x - y } { 6 } = 4 } \\ { \frac { 2 x + y } { 4 } - \frac { 2 x - 5 y } { 3 } = 5 } \end{array} \right.
Solve for x, y
x=12
y = \frac{84}{23} = 3\frac{15}{23} \approx 3.652173913
Graph
Share
Copied to clipboard
x+y+x-y=24
Consider the first equation. Multiply both sides of the equation by 6.
2x+y-y=24
Combine x and x to get 2x.
2x=24
Combine y and -y to get 0.
x=\frac{24}{2}
Divide both sides by 2.
x=12
Divide 24 by 2 to get 12.
\frac{2\times 12+y}{4}-\frac{2\times 12-5y}{3}=5
Consider the second equation. Insert the known values of variables into the equation.
3\left(2\times 12+y\right)-4\left(2\times 12-5y\right)=60
Multiply both sides of the equation by 12, the least common multiple of 4,3.
3\left(24+y\right)-4\left(2\times 12-5y\right)=60
Multiply 2 and 12 to get 24.
72+3y-4\left(2\times 12-5y\right)=60
Use the distributive property to multiply 3 by 24+y.
72+3y-4\left(24-5y\right)=60
Multiply 2 and 12 to get 24.
72+3y-96+20y=60
Use the distributive property to multiply -4 by 24-5y.
-24+3y+20y=60
Subtract 96 from 72 to get -24.
-24+23y=60
Combine 3y and 20y to get 23y.
23y=60+24
Add 24 to both sides.
23y=84
Add 60 and 24 to get 84.
y=\frac{84}{23}
Divide both sides by 23.
x=12 y=\frac{84}{23}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}