Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

1050-14x=37x-30y 2800+100x-100y=\frac{647}{21}y-\frac{647}{21}z \frac{1294}{147}y-\frac{1294}{147}z=800+25z
Multiply each equation by the least common multiple of denominators in it. Simplify.
x=\frac{350}{17}+\frac{10}{17}y
Solve 1050-14x=37x-30y for x.
2800+100\left(\frac{350}{17}+\frac{10}{17}y\right)-100y=\frac{647}{21}y-\frac{647}{21}z
Substitute \frac{350}{17}+\frac{10}{17}y for x in the equation 2800+100x-100y=\frac{647}{21}y-\frac{647}{21}z.
y=\frac{1734600}{25699}+\frac{10999}{25699}z z=-\frac{117600}{4969}+\frac{1294}{4969}y
Solve the second equation for y and the third equation for z.
z=-\frac{117600}{4969}+\frac{1294}{4969}\left(\frac{1734600}{25699}+\frac{10999}{25699}z\right)
Substitute \frac{1734600}{25699}+\frac{10999}{25699}z for y in the equation z=-\frac{117600}{4969}+\frac{1294}{4969}y.
z=-\frac{8464}{1235}
Solve z=-\frac{117600}{4969}+\frac{1294}{4969}\left(\frac{1734600}{25699}+\frac{10999}{25699}z\right) for z.
y=\frac{1734600}{25699}+\frac{10999}{25699}\left(-\frac{8464}{1235}\right)
Substitute -\frac{8464}{1235} for z in the equation y=\frac{1734600}{25699}+\frac{10999}{25699}z.
y=\frac{79736}{1235}
Calculate y from y=\frac{1734600}{25699}+\frac{10999}{25699}\left(-\frac{8464}{1235}\right).
x=\frac{350}{17}+\frac{10}{17}\times \frac{79736}{1235}
Substitute \frac{79736}{1235} for y in the equation x=\frac{350}{17}+\frac{10}{17}y.
x=\frac{14466}{247}
Calculate x from x=\frac{350}{17}+\frac{10}{17}\times \frac{79736}{1235}.
x=\frac{14466}{247} y=\frac{79736}{1235} z=-\frac{8464}{1235}
The system is now solved.