\left\{ \begin{array} { l } { \frac { 3 x - y } { 2 } - \frac { 2 x + 6 y } { 3 } = 1 } \\ { \frac { x - 3 } { 5 } + \frac { 2 x } { 3 } = \frac { 30 + 2 } { 2 } } \end{array} \right.
Solve for x, y
x = \frac{249}{13} = 19\frac{2}{13} \approx 19.153846154
y = \frac{389}{65} = 5\frac{64}{65} \approx 5.984615385
Graph
Share
Copied to clipboard
6\left(x-3\right)+10\times 2x=15\left(30+2\right)
Consider the second equation. Multiply both sides of the equation by 30, the least common multiple of 5,3,2.
6x-18+10\times 2x=15\left(30+2\right)
Use the distributive property to multiply 6 by x-3.
6x-18+20x=15\left(30+2\right)
Multiply 10 and 2 to get 20.
26x-18=15\left(30+2\right)
Combine 6x and 20x to get 26x.
26x-18=15\times 32
Add 30 and 2 to get 32.
26x-18=480
Multiply 15 and 32 to get 480.
26x=480+18
Add 18 to both sides.
26x=498
Add 480 and 18 to get 498.
x=\frac{498}{26}
Divide both sides by 26.
x=\frac{249}{13}
Reduce the fraction \frac{498}{26} to lowest terms by extracting and canceling out 2.
\frac{3\times \frac{249}{13}-y}{2}-\frac{2\times \frac{249}{13}+6y}{3}=1
Consider the first equation. Insert the known values of variables into the equation.
3\left(3\times \frac{249}{13}-y\right)-2\left(2\times \frac{249}{13}+6y\right)=6
Multiply both sides of the equation by 6, the least common multiple of 2,3.
3\left(\frac{747}{13}-y\right)-2\left(2\times \frac{249}{13}+6y\right)=6
Multiply 3 and \frac{249}{13} to get \frac{747}{13}.
\frac{2241}{13}-3y-2\left(2\times \frac{249}{13}+6y\right)=6
Use the distributive property to multiply 3 by \frac{747}{13}-y.
\frac{2241}{13}-3y-2\left(\frac{498}{13}+6y\right)=6
Multiply 2 and \frac{249}{13} to get \frac{498}{13}.
\frac{2241}{13}-3y-\frac{996}{13}-12y=6
Use the distributive property to multiply -2 by \frac{498}{13}+6y.
\frac{1245}{13}-3y-12y=6
Subtract \frac{996}{13} from \frac{2241}{13} to get \frac{1245}{13}.
\frac{1245}{13}-15y=6
Combine -3y and -12y to get -15y.
-15y=6-\frac{1245}{13}
Subtract \frac{1245}{13} from both sides.
-15y=-\frac{1167}{13}
Subtract \frac{1245}{13} from 6 to get -\frac{1167}{13}.
y=\frac{-\frac{1167}{13}}{-15}
Divide both sides by -15.
y=\frac{-1167}{13\left(-15\right)}
Express \frac{-\frac{1167}{13}}{-15} as a single fraction.
y=\frac{-1167}{-195}
Multiply 13 and -15 to get -195.
y=\frac{389}{65}
Reduce the fraction \frac{-1167}{-195} to lowest terms by extracting and canceling out -3.
x=\frac{249}{13} y=\frac{389}{65}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}