Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

6\left(x-3\right)+10\times 2x=15\left(30+2\right)
Consider the second equation. Multiply both sides of the equation by 30, the least common multiple of 5,3,2.
6x-18+10\times 2x=15\left(30+2\right)
Use the distributive property to multiply 6 by x-3.
6x-18+20x=15\left(30+2\right)
Multiply 10 and 2 to get 20.
26x-18=15\left(30+2\right)
Combine 6x and 20x to get 26x.
26x-18=15\times 32
Add 30 and 2 to get 32.
26x-18=480
Multiply 15 and 32 to get 480.
26x=480+18
Add 18 to both sides.
26x=498
Add 480 and 18 to get 498.
x=\frac{498}{26}
Divide both sides by 26.
x=\frac{249}{13}
Reduce the fraction \frac{498}{26} to lowest terms by extracting and canceling out 2.
\frac{3\times \frac{249}{13}-y}{2}-\frac{2\times \frac{249}{13}+6y}{3}=1
Consider the first equation. Insert the known values of variables into the equation.
3\left(3\times \frac{249}{13}-y\right)-2\left(2\times \frac{249}{13}+6y\right)=6
Multiply both sides of the equation by 6, the least common multiple of 2,3.
3\left(\frac{747}{13}-y\right)-2\left(2\times \frac{249}{13}+6y\right)=6
Multiply 3 and \frac{249}{13} to get \frac{747}{13}.
\frac{2241}{13}-3y-2\left(2\times \frac{249}{13}+6y\right)=6
Use the distributive property to multiply 3 by \frac{747}{13}-y.
\frac{2241}{13}-3y-2\left(\frac{498}{13}+6y\right)=6
Multiply 2 and \frac{249}{13} to get \frac{498}{13}.
\frac{2241}{13}-3y-\frac{996}{13}-12y=6
Use the distributive property to multiply -2 by \frac{498}{13}+6y.
\frac{1245}{13}-3y-12y=6
Subtract \frac{996}{13} from \frac{2241}{13} to get \frac{1245}{13}.
\frac{1245}{13}-15y=6
Combine -3y and -12y to get -15y.
-15y=6-\frac{1245}{13}
Subtract \frac{1245}{13} from both sides.
-15y=-\frac{1167}{13}
Subtract \frac{1245}{13} from 6 to get -\frac{1167}{13}.
y=\frac{-\frac{1167}{13}}{-15}
Divide both sides by -15.
y=\frac{-1167}{13\left(-15\right)}
Express \frac{-\frac{1167}{13}}{-15} as a single fraction.
y=\frac{-1167}{-195}
Multiply 13 and -15 to get -195.
y=\frac{389}{65}
Reduce the fraction \frac{-1167}{-195} to lowest terms by extracting and canceling out -3.
x=\frac{249}{13} y=\frac{389}{65}
The system is now solved.