\left\{ \begin{array} { l } { \frac { 2 x - 1 } { 5 } + \frac { 34 - 2 } { 4 } = 2 } \\ { \frac { 3 x + 1 } { 2 } - \frac { 3 y + 2 } { 4 } = 0 } \end{array} \right.
Solve for x, y
x = -\frac{29}{2} = -14\frac{1}{2} = -14.5
y=-29
Graph
Share
Copied to clipboard
4\left(2x-1\right)+5\left(34-2\right)=40
Consider the first equation. Multiply both sides of the equation by 20, the least common multiple of 5,4.
8x-4+5\left(34-2\right)=40
Use the distributive property to multiply 4 by 2x-1.
8x-4+5\times 32=40
Subtract 2 from 34 to get 32.
8x-4+160=40
Multiply 5 and 32 to get 160.
8x+156=40
Add -4 and 160 to get 156.
8x=40-156
Subtract 156 from both sides.
8x=-116
Subtract 156 from 40 to get -116.
x=\frac{-116}{8}
Divide both sides by 8.
x=-\frac{29}{2}
Reduce the fraction \frac{-116}{8} to lowest terms by extracting and canceling out 4.
\frac{3\left(-\frac{29}{2}\right)+1}{2}-\frac{3y+2}{4}=0
Consider the second equation. Insert the known values of variables into the equation.
2\left(3\left(-\frac{29}{2}\right)+1\right)-\left(3y+2\right)=0
Multiply both sides of the equation by 4, the least common multiple of 2,4.
2\left(-\frac{87}{2}+1\right)-\left(3y+2\right)=0
Multiply 3 and -\frac{29}{2} to get -\frac{87}{2}.
2\left(-\frac{85}{2}\right)-\left(3y+2\right)=0
Add -\frac{87}{2} and 1 to get -\frac{85}{2}.
-85-\left(3y+2\right)=0
Multiply 2 and -\frac{85}{2} to get -85.
-85-3y-2=0
To find the opposite of 3y+2, find the opposite of each term.
-87-3y=0
Subtract 2 from -85 to get -87.
-3y=87
Add 87 to both sides. Anything plus zero gives itself.
y=\frac{87}{-3}
Divide both sides by -3.
y=-29
Divide 87 by -3 to get -29.
x=-\frac{29}{2} y=-29
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}