\left\{ \begin{array} { l } { \frac { 11 x } { 3 } + z = 16 } \\ { - \frac { 1 x } { 3 } - z = - 6 } \end{array} \right.
Solve for x, z
x=3
z=5
Share
Copied to clipboard
11x+3z=48
Consider the first equation. Multiply both sides of the equation by 3.
-x-3z=-18
Consider the second equation. Multiply both sides of the equation by 3.
11x+3z=48,-x-3z=-18
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
11x+3z=48
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
11x=-3z+48
Subtract 3z from both sides of the equation.
x=\frac{1}{11}\left(-3z+48\right)
Divide both sides by 11.
x=-\frac{3}{11}z+\frac{48}{11}
Multiply \frac{1}{11} times -3z+48.
-\left(-\frac{3}{11}z+\frac{48}{11}\right)-3z=-18
Substitute \frac{-3z+48}{11} for x in the other equation, -x-3z=-18.
\frac{3}{11}z-\frac{48}{11}-3z=-18
Multiply -1 times \frac{-3z+48}{11}.
-\frac{30}{11}z-\frac{48}{11}=-18
Add \frac{3z}{11} to -3z.
-\frac{30}{11}z=-\frac{150}{11}
Add \frac{48}{11} to both sides of the equation.
z=5
Divide both sides of the equation by -\frac{30}{11}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{11}\times 5+\frac{48}{11}
Substitute 5 for z in x=-\frac{3}{11}z+\frac{48}{11}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-15+48}{11}
Multiply -\frac{3}{11} times 5.
x=3
Add \frac{48}{11} to -\frac{15}{11} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=3,z=5
The system is now solved.
11x+3z=48
Consider the first equation. Multiply both sides of the equation by 3.
-x-3z=-18
Consider the second equation. Multiply both sides of the equation by 3.
11x+3z=48,-x-3z=-18
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}11&3\\-1&-3\end{matrix}\right)\left(\begin{matrix}x\\z\end{matrix}\right)=\left(\begin{matrix}48\\-18\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}11&3\\-1&-3\end{matrix}\right))\left(\begin{matrix}11&3\\-1&-3\end{matrix}\right)\left(\begin{matrix}x\\z\end{matrix}\right)=inverse(\left(\begin{matrix}11&3\\-1&-3\end{matrix}\right))\left(\begin{matrix}48\\-18\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}11&3\\-1&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\z\end{matrix}\right)=inverse(\left(\begin{matrix}11&3\\-1&-3\end{matrix}\right))\left(\begin{matrix}48\\-18\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\z\end{matrix}\right)=inverse(\left(\begin{matrix}11&3\\-1&-3\end{matrix}\right))\left(\begin{matrix}48\\-18\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\z\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{11\left(-3\right)-3\left(-1\right)}&-\frac{3}{11\left(-3\right)-3\left(-1\right)}\\-\frac{-1}{11\left(-3\right)-3\left(-1\right)}&\frac{11}{11\left(-3\right)-3\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}48\\-18\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\z\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{1}{10}\\-\frac{1}{30}&-\frac{11}{30}\end{matrix}\right)\left(\begin{matrix}48\\-18\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\z\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 48+\frac{1}{10}\left(-18\right)\\-\frac{1}{30}\times 48-\frac{11}{30}\left(-18\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\z\end{matrix}\right)=\left(\begin{matrix}3\\5\end{matrix}\right)
Do the arithmetic.
x=3,z=5
Extract the matrix elements x and z.
11x+3z=48
Consider the first equation. Multiply both sides of the equation by 3.
-x-3z=-18
Consider the second equation. Multiply both sides of the equation by 3.
11x+3z=48,-x-3z=-18
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-11x-3z=-48,11\left(-1\right)x+11\left(-3\right)z=11\left(-18\right)
To make 11x and -x equal, multiply all terms on each side of the first equation by -1 and all terms on each side of the second by 11.
-11x-3z=-48,-11x-33z=-198
Simplify.
-11x+11x-3z+33z=-48+198
Subtract -11x-33z=-198 from -11x-3z=-48 by subtracting like terms on each side of the equal sign.
-3z+33z=-48+198
Add -11x to 11x. Terms -11x and 11x cancel out, leaving an equation with only one variable that can be solved.
30z=-48+198
Add -3z to 33z.
30z=150
Add -48 to 198.
z=5
Divide both sides by 30.
-x-3\times 5=-18
Substitute 5 for z in -x-3z=-18. Because the resulting equation contains only one variable, you can solve for x directly.
-x-15=-18
Multiply -3 times 5.
-x=-3
Add 15 to both sides of the equation.
x=3
Divide both sides by -1.
x=3,z=5
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}