Skip to main content
Solve for d, t, f
Tick mark Image

Similar Problems from Web Search

Share

d=e+4t-4
Solve d-e-4t=-4 for d.
2\left(e+4t-4\right)+2e+f=11 e+4t-4+e+9f=13
Substitute e+4t-4 for d in the second and third equation.
t=\frac{19}{8}-\frac{1}{2}e-\frac{1}{8}f f=-\frac{2}{9}e+\frac{17}{9}-\frac{4}{9}t
Solve these equations for t and f respectively.
f=-\frac{2}{9}e+\frac{17}{9}-\frac{4}{9}\left(\frac{19}{8}-\frac{1}{2}e-\frac{1}{8}f\right)
Substitute \frac{19}{8}-\frac{1}{2}e-\frac{1}{8}f for t in the equation f=-\frac{2}{9}e+\frac{17}{9}-\frac{4}{9}t.
f=\frac{15}{17}
Solve f=-\frac{2}{9}e+\frac{17}{9}-\frac{4}{9}\left(\frac{19}{8}-\frac{1}{2}e-\frac{1}{8}f\right) for f.
t=\frac{19}{8}-\frac{1}{2}e-\frac{1}{8}\times \frac{15}{17}
Substitute \frac{15}{17} for f in the equation t=\frac{19}{8}-\frac{1}{2}e-\frac{1}{8}f.
t=-\frac{1}{2}e+\frac{77}{34}
Calculate t from t=\frac{19}{8}-\frac{1}{2}e-\frac{1}{8}\times \frac{15}{17}.
d=e+4\left(-\frac{1}{2}e+\frac{77}{34}\right)-4
Substitute -\frac{1}{2}e+\frac{77}{34} for t in the equation d=e+4t-4.
d=-e+\frac{86}{17}
Calculate d from d=e+4\left(-\frac{1}{2}e+\frac{77}{34}\right)-4.
d=-e+\frac{86}{17} t=-\frac{1}{2}e+\frac{77}{34} f=\frac{15}{17}
The system is now solved.