Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

x=\frac{10}{9}-\frac{8}{9}y-\frac{2}{9}z
Solve 9x+8y+2z=10 for x.
3\left(\frac{10}{9}-\frac{8}{9}y-\frac{2}{9}z\right)+11y-9z=1 3+10\left(\frac{10}{9}-\frac{8}{9}y-\frac{2}{9}z\right)+8y=11
Substitute \frac{10}{9}-\frac{8}{9}y-\frac{2}{9}z for x in the second and third equation.
y=-\frac{7}{25}+\frac{29}{25}z z=\frac{7}{5}-\frac{2}{5}y
Solve these equations for y and z respectively.
z=\frac{7}{5}-\frac{2}{5}\left(-\frac{7}{25}+\frac{29}{25}z\right)
Substitute -\frac{7}{25}+\frac{29}{25}z for y in the equation z=\frac{7}{5}-\frac{2}{5}y.
z=\frac{63}{61}
Solve z=\frac{7}{5}-\frac{2}{5}\left(-\frac{7}{25}+\frac{29}{25}z\right) for z.
y=-\frac{7}{25}+\frac{29}{25}\times \frac{63}{61}
Substitute \frac{63}{61} for z in the equation y=-\frac{7}{25}+\frac{29}{25}z.
y=\frac{56}{61}
Calculate y from y=-\frac{7}{25}+\frac{29}{25}\times \frac{63}{61}.
x=\frac{10}{9}-\frac{8}{9}\times \frac{56}{61}-\frac{2}{9}\times \frac{63}{61}
Substitute \frac{56}{61} for y and \frac{63}{61} for z in the equation x=\frac{10}{9}-\frac{8}{9}y-\frac{2}{9}z.
x=\frac{4}{61}
Calculate x from x=\frac{10}{9}-\frac{8}{9}\times \frac{56}{61}-\frac{2}{9}\times \frac{63}{61}.
x=\frac{4}{61} y=\frac{56}{61} z=\frac{63}{61}
The system is now solved.