\left\{ \begin{array} { c } { 4 x - y = 6 } \\ { 4 x ^ { 2 } + y ^ { 2 } = 8 } \end{array} \right.
Solve for x, y
x=\frac{7}{5}=1.4\text{, }y=-\frac{2}{5}=-0.4
x=1\text{, }y=-2
Graph
Share
Copied to clipboard
4x-y=6,y^{2}+4x^{2}=8
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x-y=6
Solve 4x-y=6 for x by isolating x on the left hand side of the equal sign.
4x=y+6
Subtract -y from both sides of the equation.
x=\frac{1}{4}y+\frac{3}{2}
Divide both sides by 4.
y^{2}+4\left(\frac{1}{4}y+\frac{3}{2}\right)^{2}=8
Substitute \frac{1}{4}y+\frac{3}{2} for x in the other equation, y^{2}+4x^{2}=8.
y^{2}+4\left(\frac{1}{16}y^{2}+\frac{3}{4}y+\frac{9}{4}\right)=8
Square \frac{1}{4}y+\frac{3}{2}.
y^{2}+\frac{1}{4}y^{2}+3y+9=8
Multiply 4 times \frac{1}{16}y^{2}+\frac{3}{4}y+\frac{9}{4}.
\frac{5}{4}y^{2}+3y+9=8
Add y^{2} to \frac{1}{4}y^{2}.
\frac{5}{4}y^{2}+3y+1=0
Subtract 8 from both sides of the equation.
y=\frac{-3±\sqrt{3^{2}-4\times \frac{5}{4}}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+4\times \left(\frac{1}{4}\right)^{2} for a, 4\times \frac{3}{2}\times \frac{1}{4}\times 2 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-3±\sqrt{9-4\times \frac{5}{4}}}{2\times \frac{5}{4}}
Square 4\times \frac{3}{2}\times \frac{1}{4}\times 2.
y=\frac{-3±\sqrt{9-5}}{2\times \frac{5}{4}}
Multiply -4 times 1+4\times \left(\frac{1}{4}\right)^{2}.
y=\frac{-3±\sqrt{4}}{2\times \frac{5}{4}}
Add 9 to -5.
y=\frac{-3±2}{2\times \frac{5}{4}}
Take the square root of 4.
y=\frac{-3±2}{\frac{5}{2}}
Multiply 2 times 1+4\times \left(\frac{1}{4}\right)^{2}.
y=-\frac{1}{\frac{5}{2}}
Now solve the equation y=\frac{-3±2}{\frac{5}{2}} when ± is plus. Add -3 to 2.
y=-\frac{2}{5}
Divide -1 by \frac{5}{2} by multiplying -1 by the reciprocal of \frac{5}{2}.
y=-\frac{5}{\frac{5}{2}}
Now solve the equation y=\frac{-3±2}{\frac{5}{2}} when ± is minus. Subtract 2 from -3.
y=-2
Divide -5 by \frac{5}{2} by multiplying -5 by the reciprocal of \frac{5}{2}.
x=\frac{1}{4}\left(-\frac{2}{5}\right)+\frac{3}{2}
There are two solutions for y: -\frac{2}{5} and -2. Substitute -\frac{2}{5} for y in the equation x=\frac{1}{4}y+\frac{3}{2} to find the corresponding solution for x that satisfies both equations.
x=-\frac{1}{10}+\frac{3}{2}
Multiply \frac{1}{4} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{7}{5}
Add -\frac{2}{5}\times \frac{1}{4} to \frac{3}{2}.
x=\frac{1}{4}\left(-2\right)+\frac{3}{2}
Now substitute -2 for y in the equation x=\frac{1}{4}y+\frac{3}{2} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{-1+3}{2}
Multiply \frac{1}{4} times -2.
x=1
Add -2\times \frac{1}{4} to \frac{3}{2}.
x=\frac{7}{5},y=-\frac{2}{5}\text{ or }x=1,y=-2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}