Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

x_{2}=2x_{1}+3x_{3}-1
Solve 2x_{1}-x_{2}+3x_{3}=1 for x_{2}.
4x_{1}+2\left(2x_{1}+3x_{3}-1\right)+5x_{3}=4 x_{1}+2\left(2x_{1}+3x_{3}-1\right)=7
Substitute 2x_{1}+3x_{3}-1 for x_{2} in the second and third equation.
x_{1}=-\frac{11}{8}x_{3}+\frac{3}{4} x_{3}=\frac{3}{2}-\frac{5}{6}x_{1}
Solve these equations for x_{1} and x_{3} respectively.
x_{3}=\frac{3}{2}-\frac{5}{6}\left(-\frac{11}{8}x_{3}+\frac{3}{4}\right)
Substitute -\frac{11}{8}x_{3}+\frac{3}{4} for x_{1} in the equation x_{3}=\frac{3}{2}-\frac{5}{6}x_{1}.
x_{3}=-6
Solve x_{3}=\frac{3}{2}-\frac{5}{6}\left(-\frac{11}{8}x_{3}+\frac{3}{4}\right) for x_{3}.
x_{1}=-\frac{11}{8}\left(-6\right)+\frac{3}{4}
Substitute -6 for x_{3} in the equation x_{1}=-\frac{11}{8}x_{3}+\frac{3}{4}.
x_{1}=9
Calculate x_{1} from x_{1}=-\frac{11}{8}\left(-6\right)+\frac{3}{4}.
x_{2}=2\times 9+3\left(-6\right)-1
Substitute 9 for x_{1} and -6 for x_{3} in the equation x_{2}=2x_{1}+3x_{3}-1.
x_{2}=-1
Calculate x_{2} from x_{2}=2\times 9+3\left(-6\right)-1.
x_{1}=9 x_{2}=-1 x_{3}=-6
The system is now solved.