\left\{ \begin{array} { c } { \lambda _ { 1 } + \lambda _ { 2 } - 3 \lambda _ { 3 } = 0 } \\ { \lambda _ { 1 } - \lambda _ { 2 } + 5 \lambda _ { 3 } = 0 } \\ { \lambda _ { 2 } - 6 \lambda _ { 3 } = 0 } \end{array} \right.
Solve for λ_1, λ_2, λ_3
\lambda _{1}=0
\lambda _{2}=0
\lambda _{3}=0
Share
Copied to clipboard
\lambda _{1}=-\lambda _{2}+3\lambda _{3}
Solve \lambda _{1}+\lambda _{2}-3\lambda _{3}=0 for \lambda _{1}.
-\lambda _{2}+3\lambda _{3}-\lambda _{2}+5\lambda _{3}=0
Substitute -\lambda _{2}+3\lambda _{3} for \lambda _{1} in the equation \lambda _{1}-\lambda _{2}+5\lambda _{3}=0.
\lambda _{2}=4\lambda _{3} \lambda _{3}=\frac{1}{6}\lambda _{2}
Solve the second equation for \lambda _{2} and the third equation for \lambda _{3}.
\lambda _{3}=\frac{1}{6}\times 4\lambda _{3}
Substitute 4\lambda _{3} for \lambda _{2} in the equation \lambda _{3}=\frac{1}{6}\lambda _{2}.
\lambda _{3}=0
Solve \lambda _{3}=\frac{1}{6}\times 4\lambda _{3} for \lambda _{3}.
\lambda _{2}=4\times 0
Substitute 0 for \lambda _{3} in the equation \lambda _{2}=4\lambda _{3}.
\lambda _{2}=0
Calculate \lambda _{2} from \lambda _{2}=4\times 0.
\lambda _{1}=-0+3\times 0
Substitute 0 for \lambda _{2} and 0 for \lambda _{3} in the equation \lambda _{1}=-\lambda _{2}+3\lambda _{3}.
\lambda _{1}=0
Calculate \lambda _{1} from \lambda _{1}=-0+3\times 0.
\lambda _{1}=0 \lambda _{2}=0 \lambda _{3}=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}