Skip to main content
Solve for λ
Tick mark Image

Similar Problems from Web Search

Share

\lambda ^{2}+6\lambda -4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\lambda =\frac{-6±\sqrt{6^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 6 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\lambda =\frac{-6±\sqrt{36-4\left(-4\right)}}{2}
Square 6.
\lambda =\frac{-6±\sqrt{36+16}}{2}
Multiply -4 times -4.
\lambda =\frac{-6±\sqrt{52}}{2}
Add 36 to 16.
\lambda =\frac{-6±2\sqrt{13}}{2}
Take the square root of 52.
\lambda =\frac{2\sqrt{13}-6}{2}
Now solve the equation \lambda =\frac{-6±2\sqrt{13}}{2} when ± is plus. Add -6 to 2\sqrt{13}.
\lambda =\sqrt{13}-3
Divide -6+2\sqrt{13} by 2.
\lambda =\frac{-2\sqrt{13}-6}{2}
Now solve the equation \lambda =\frac{-6±2\sqrt{13}}{2} when ± is minus. Subtract 2\sqrt{13} from -6.
\lambda =-\sqrt{13}-3
Divide -6-2\sqrt{13} by 2.
\lambda =\sqrt{13}-3 \lambda =-\sqrt{13}-3
The equation is now solved.
\lambda ^{2}+6\lambda -4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\lambda ^{2}+6\lambda -4-\left(-4\right)=-\left(-4\right)
Add 4 to both sides of the equation.
\lambda ^{2}+6\lambda =-\left(-4\right)
Subtracting -4 from itself leaves 0.
\lambda ^{2}+6\lambda =4
Subtract -4 from 0.
\lambda ^{2}+6\lambda +3^{2}=4+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\lambda ^{2}+6\lambda +9=4+9
Square 3.
\lambda ^{2}+6\lambda +9=13
Add 4 to 9.
\left(\lambda +3\right)^{2}=13
Factor \lambda ^{2}+6\lambda +9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\lambda +3\right)^{2}}=\sqrt{13}
Take the square root of both sides of the equation.
\lambda +3=\sqrt{13} \lambda +3=-\sqrt{13}
Simplify.
\lambda =\sqrt{13}-3 \lambda =-\sqrt{13}-3
Subtract 3 from both sides of the equation.