Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int xft\mathrm{d}t
Evaluate the indefinite integral first.
xf\int t\mathrm{d}t
Factor out the constant using \int af\left(t\right)\mathrm{d}t=a\int f\left(t\right)\mathrm{d}t.
xf\times \frac{t^{2}}{2}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}.
\frac{xft^{2}}{2}
Simplify.
\frac{1}{2}xfx^{2}-\frac{1}{2}xfa^{2}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{xf\left(x-a\right)\left(x+a\right)}{2}
Simplify.