Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{6}^{9}4x^{2}-36x-36x+324\mathrm{d}x
Apply the distributive property by multiplying each term of x-9 by each term of 4x-36.
\int _{6}^{9}4x^{2}-72x+324\mathrm{d}x
Combine -36x and -36x to get -72x.
\int 4x^{2}-72x+324\mathrm{d}x
Evaluate the indefinite integral first.
\int 4x^{2}\mathrm{d}x+\int -72x\mathrm{d}x+\int 324\mathrm{d}x
Integrate the sum term by term.
4\int x^{2}\mathrm{d}x-72\int x\mathrm{d}x+\int 324\mathrm{d}x
Factor out the constant in each of the terms.
\frac{4x^{3}}{3}-72\int x\mathrm{d}x+\int 324\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 4 times \frac{x^{3}}{3}.
\frac{4x^{3}}{3}-36x^{2}+\int 324\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -72 times \frac{x^{2}}{2}.
\frac{4x^{3}}{3}-36x^{2}+324x
Find the integral of 324 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{4}{3}\times 9^{3}-36\times 9^{2}+324\times 9-\left(\frac{4}{3}\times 6^{3}-36\times 6^{2}+324\times 6\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
36
Simplify.