Evaluate
36
Share
Copied to clipboard
\int _{6}^{9}4x^{2}-36x-36x+324\mathrm{d}x
Apply the distributive property by multiplying each term of x-9 by each term of 4x-36.
\int _{6}^{9}4x^{2}-72x+324\mathrm{d}x
Combine -36x and -36x to get -72x.
\int 4x^{2}-72x+324\mathrm{d}x
Evaluate the indefinite integral first.
\int 4x^{2}\mathrm{d}x+\int -72x\mathrm{d}x+\int 324\mathrm{d}x
Integrate the sum term by term.
4\int x^{2}\mathrm{d}x-72\int x\mathrm{d}x+\int 324\mathrm{d}x
Factor out the constant in each of the terms.
\frac{4x^{3}}{3}-72\int x\mathrm{d}x+\int 324\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 4 times \frac{x^{3}}{3}.
\frac{4x^{3}}{3}-36x^{2}+\int 324\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -72 times \frac{x^{2}}{2}.
\frac{4x^{3}}{3}-36x^{2}+324x
Find the integral of 324 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{4}{3}\times 9^{3}-36\times 9^{2}+324\times 9-\left(\frac{4}{3}\times 6^{3}-36\times 6^{2}+324\times 6\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
36
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}