Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int -x^{2}+7x-12\mathrm{d}x
Evaluate the indefinite integral first.
\int -x^{2}\mathrm{d}x+\int 7x\mathrm{d}x+\int -12\mathrm{d}x
Integrate the sum term by term.
-\int x^{2}\mathrm{d}x+7\int x\mathrm{d}x+\int -12\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{x^{3}}{3}+7\int x\mathrm{d}x+\int -12\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
-\frac{x^{3}}{3}+\frac{7x^{2}}{2}+\int -12\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 7 times \frac{x^{2}}{2}.
-\frac{x^{3}}{3}+\frac{7x^{2}}{2}-12x
Find the integral of -12 using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{4^{3}}{3}+\frac{7}{2}\times 4^{2}-12\times 4-\left(-\frac{3^{3}}{3}+\frac{7}{2}\times 3^{2}-12\times 3\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{6}
Simplify.