Evaluate
12250
Share
Copied to clipboard
\int 25t+9t^{2}\mathrm{d}t
Evaluate the indefinite integral first.
\int 25t\mathrm{d}t+\int 9t^{2}\mathrm{d}t
Integrate the sum term by term.
25\int t\mathrm{d}t+9\int t^{2}\mathrm{d}t
Factor out the constant in each of the terms.
\frac{25t^{2}}{2}+9\int t^{2}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply 25 times \frac{t^{2}}{2}.
\frac{25t^{2}}{2}+3t^{3}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply 9 times \frac{t^{3}}{3}.
\frac{25}{2}\times \left(3\times 5\right)^{2}+3\times \left(3\times 5\right)^{3}-\left(\frac{25}{2}\times 5^{2}+3\times 5^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
12250
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}