Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 25t+9t^{2}\mathrm{d}t
Evaluate the indefinite integral first.
\int 25t\mathrm{d}t+\int 9t^{2}\mathrm{d}t
Integrate the sum term by term.
25\int t\mathrm{d}t+9\int t^{2}\mathrm{d}t
Factor out the constant in each of the terms.
\frac{25t^{2}}{2}+9\int t^{2}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply 25 times \frac{t^{2}}{2}.
\frac{25t^{2}}{2}+3t^{3}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply 9 times \frac{t^{3}}{3}.
\frac{25}{2}\times \left(3\times 5\right)^{2}+3\times \left(3\times 5\right)^{3}-\left(\frac{25}{2}\times 5^{2}+3\times 5^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
12250
Simplify.