Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int -x+\frac{4}{x}\mathrm{d}x
Evaluate the indefinite integral first.
\int -x\mathrm{d}x+\int \frac{4}{x}\mathrm{d}x
Integrate the sum term by term.
-\int x\mathrm{d}x+4\int \frac{1}{x}\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{x^{2}}{2}+4\int \frac{1}{x}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
-\frac{x^{2}}{2}+4\ln(|x|)
Use \int \frac{1}{x}\mathrm{d}x=\ln(|x|) from the table of common integrals to obtain the result.
-\frac{4^{2}}{2}+4\ln(|4|)-\left(-\frac{1^{2}}{2}+4\ln(|1|)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{15}{2}+8\ln(2)
Simplify.