Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 4-x^{2}-\frac{x^{3}}{4}-2\mathrm{d}x
Evaluate the indefinite integral first.
\int 4\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int -\frac{x^{3}}{4}\mathrm{d}x+\int -2\mathrm{d}x
Integrate the sum term by term.
\int 4\mathrm{d}x-\int x^{2}\mathrm{d}x-\frac{\int x^{3}\mathrm{d}x}{4}+\int -2\mathrm{d}x
Factor out the constant in each of the terms.
4x-\int x^{2}\mathrm{d}x-\frac{\int x^{3}\mathrm{d}x}{4}+\int -2\mathrm{d}x
Find the integral of 4 using the table of common integrals rule \int a\mathrm{d}x=ax.
4x-\frac{x^{3}}{3}-\frac{\int x^{3}\mathrm{d}x}{4}+\int -2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
4x-\frac{x^{3}}{3}-\frac{x^{4}}{16}+\int -2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -\frac{1}{4} times \frac{x^{4}}{4}.
4x-\frac{x^{3}}{3}-\frac{x^{4}}{16}-2x
Find the integral of -2 using the table of common integrals rule \int a\mathrm{d}x=ax.
2x-\frac{x^{3}}{3}-\frac{x^{4}}{16}
Simplify.
2\times 2-\frac{2^{3}}{3}-\frac{2^{4}}{16}-\left(2\times 1-\frac{1^{3}}{3}-\frac{1^{4}}{16}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{61}{48}
Simplify.