Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{5x^{3}}{2}+\frac{5x^{2}}{4}\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{5x^{3}}{2}\mathrm{d}x+\int \frac{5x^{2}}{4}\mathrm{d}x
Integrate the sum term by term.
\frac{5\int x^{3}\mathrm{d}x}{2}+\frac{5\int x^{2}\mathrm{d}x}{4}
Factor out the constant in each of the terms.
\frac{5x^{4}}{8}+\frac{5\int x^{2}\mathrm{d}x}{4}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 2.5 times \frac{x^{4}}{4}.
\frac{5x^{4}}{8}+\frac{5x^{3}}{12}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 1.25 times \frac{x^{3}}{3}.
\frac{5}{8}\times 8^{4}+\frac{5}{12}\times 8^{3}-\left(\frac{5}{8}\times 0^{4}+\frac{5}{12}\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{8320}{3}
Simplify.