Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{6}1x^{2}\times 1\mathrm{d}x
Multiply x and x to get x^{2}.
\int _{0}^{6}x^{2}\mathrm{d}x
Multiply 1 and 1 to get 1.
\int x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{6^{3}}{3}-\frac{0^{3}}{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
72
Simplify.