Evaluate
15
Share
Copied to clipboard
\int _{0}^{5}4\times \frac{\left(y-5\right)\times 3}{-10}\mathrm{d}y
Divide y-5 by \frac{-10}{3} by multiplying y-5 by the reciprocal of \frac{-10}{3}.
\int _{0}^{5}\frac{4\left(y-5\right)\times 3}{-10}\mathrm{d}y
Express 4\times \frac{\left(y-5\right)\times 3}{-10} as a single fraction.
\int _{0}^{5}\frac{12\left(y-5\right)}{-10}\mathrm{d}y
Multiply 4 and 3 to get 12.
\int _{0}^{5}-\frac{6}{5}\left(y-5\right)\mathrm{d}y
Divide 12\left(y-5\right) by -10 to get -\frac{6}{5}\left(y-5\right).
\int _{0}^{5}-\frac{6}{5}y-\frac{6}{5}\left(-5\right)\mathrm{d}y
Use the distributive property to multiply -\frac{6}{5} by y-5.
\int _{0}^{5}-\frac{6}{5}y+\frac{-6\left(-5\right)}{5}\mathrm{d}y
Express -\frac{6}{5}\left(-5\right) as a single fraction.
\int _{0}^{5}-\frac{6}{5}y+\frac{30}{5}\mathrm{d}y
Multiply -6 and -5 to get 30.
\int _{0}^{5}-\frac{6}{5}y+6\mathrm{d}y
Divide 30 by 5 to get 6.
\int -\frac{6y}{5}+6\mathrm{d}y
Evaluate the indefinite integral first.
\int -\frac{6y}{5}\mathrm{d}y+\int 6\mathrm{d}y
Integrate the sum term by term.
-\frac{6\int y\mathrm{d}y}{5}+\int 6\mathrm{d}y
Factor out the constant in each of the terms.
-\frac{3y^{2}}{5}+\int 6\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}. Multiply -\frac{6}{5} times \frac{y^{2}}{2}.
-\frac{3y^{2}}{5}+6y
Find the integral of 6 using the table of common integrals rule \int a\mathrm{d}y=ay.
-\frac{3}{5}\times 5^{2}+6\times 5-\left(-\frac{3}{5}\times 0^{2}+6\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
15
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}