Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{4}6.67x^{2}\left(-0.08\right)\mathrm{d}x
Multiply x and x to get x^{2}.
\int _{0}^{4}-0.5336x^{2}\mathrm{d}x
Multiply 6.67 and -0.08 to get -0.5336.
\int -\frac{667x^{2}}{1250}\mathrm{d}x
Evaluate the indefinite integral first.
-\frac{667\int x^{2}\mathrm{d}x}{1250}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
-\frac{667x^{3}}{3750}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
-\frac{667}{3750}\times 4^{3}+\frac{667}{3750}\times 0^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{21344}{1875}
Simplify.