Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{4}-1.375x-0.25x^{2}\mathrm{d}x
Use the distributive property to multiply 2.75x+0.5x^{2} by -0.5.
\int -\frac{11x}{8}-\frac{x^{2}}{4}\mathrm{d}x
Evaluate the indefinite integral first.
\int -\frac{11x}{8}\mathrm{d}x+\int -\frac{x^{2}}{4}\mathrm{d}x
Integrate the sum term by term.
-\frac{11\int x\mathrm{d}x}{8}-\frac{\int x^{2}\mathrm{d}x}{4}
Factor out the constant in each of the terms.
-\frac{11x^{2}}{16}-\frac{\int x^{2}\mathrm{d}x}{4}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1.375 times \frac{x^{2}}{2}.
-\frac{11x^{2}}{16}-\frac{x^{3}}{12}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -0.25 times \frac{x^{3}}{3}.
-\frac{11}{16}\times 4^{2}-\frac{4^{3}}{12}-\left(-\frac{11}{16}\times 0^{2}-\frac{0^{3}}{12}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{49}{3}
Simplify.