Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{4}10.24-1.28x-0.48x+0.06x^{2}\mathrm{d}x
Apply the distributive property by multiplying each term of 12.8-0.6x by each term of 0.8-0.1x.
\int _{0}^{4}10.24-1.76x+0.06x^{2}\mathrm{d}x
Combine -1.28x and -0.48x to get -1.76x.
\int 10.24-\frac{44x}{25}+\frac{3x^{2}}{50}\mathrm{d}x
Evaluate the indefinite integral first.
\int 10.24\mathrm{d}x+\int -\frac{44x}{25}\mathrm{d}x+\int \frac{3x^{2}}{50}\mathrm{d}x
Integrate the sum term by term.
\int 10.24\mathrm{d}x-\frac{44\int x\mathrm{d}x}{25}+\frac{3\int x^{2}\mathrm{d}x}{50}
Factor out the constant in each of the terms.
\frac{256x}{25}-\frac{44\int x\mathrm{d}x}{25}+\frac{3\int x^{2}\mathrm{d}x}{50}
Find the integral of 10.24 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{256x}{25}-\frac{22x^{2}}{25}+\frac{3\int x^{2}\mathrm{d}x}{50}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1.76 times \frac{x^{2}}{2}.
\frac{256x}{25}-\frac{22x^{2}}{25}+\frac{x^{3}}{50}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 0.06 times \frac{x^{3}}{3}.
10.24\times 4-\frac{22}{25}\times 4^{2}+\frac{4^{3}}{50}-\left(10.24\times 0-\frac{22}{25}\times 0^{2}+\frac{0^{3}}{50}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{704}{25}
Simplify.