Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{4}10.24+5.12x-0.48x-0.24x^{2}\mathrm{d}x
Apply the distributive property by multiplying each term of 12.8-0.6x by each term of 0.8+0.4x.
\int _{0}^{4}10.24+4.64x-0.24x^{2}\mathrm{d}x
Combine 5.12x and -0.48x to get 4.64x.
\int \frac{256+116x-6x^{2}}{25}\mathrm{d}x
Evaluate the indefinite integral first.
\int 10.24\mathrm{d}x+\int \frac{116x}{25}\mathrm{d}x+\int -\frac{6x^{2}}{25}\mathrm{d}x
Integrate the sum term by term.
\int 10.24\mathrm{d}x+\frac{116\int x\mathrm{d}x}{25}-\frac{6\int x^{2}\mathrm{d}x}{25}
Factor out the constant in each of the terms.
\frac{256x+116\int x\mathrm{d}x-6\int x^{2}\mathrm{d}x}{25}
Find the integral of 10.24 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{256x+58x^{2}-6\int x^{2}\mathrm{d}x}{25}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 4.64 times \frac{x^{2}}{2}.
\frac{256x+58x^{2}-2x^{3}}{25}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -0.24 times \frac{x^{3}}{3}.
10.24\times 4+\frac{58}{25}\times 4^{2}-\frac{2}{25}\times 4^{3}-\left(10.24\times 0+\frac{58}{25}\times 0^{2}-\frac{2}{25}\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1824}{25}
Simplify.