Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{4}-37+6.625x\mathrm{d}x
Use the distributive property to multiply -74+13.25x by 0.5.
\int -37+\frac{53x}{8}\mathrm{d}x
Evaluate the indefinite integral first.
\int -37\mathrm{d}x+\int \frac{53x}{8}\mathrm{d}x
Integrate the sum term by term.
\int -37\mathrm{d}x+\frac{53\int x\mathrm{d}x}{8}
Factor out the constant in each of the terms.
-37x+\frac{53\int x\mathrm{d}x}{8}
Find the integral of -37 using the table of common integrals rule \int a\mathrm{d}x=ax.
-37x+\frac{53x^{2}}{16}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 6.625 times \frac{x^{2}}{2}.
-37\times 4+\frac{53}{16}\times 4^{2}-\left(-37\times 0+\frac{53}{16}\times 0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-95
Simplify.