Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{4}\left(-35+4.875x\right)x\mathrm{d}x
Use the distributive property to multiply -70+9.75x by 0.5.
\int _{0}^{4}-35x+4.875x^{2}\mathrm{d}x
Use the distributive property to multiply -35+4.875x by x.
\int -35x+\frac{39x^{2}}{8}\mathrm{d}x
Evaluate the indefinite integral first.
\int -35x\mathrm{d}x+\int \frac{39x^{2}}{8}\mathrm{d}x
Integrate the sum term by term.
-35\int x\mathrm{d}x+\frac{39\int x^{2}\mathrm{d}x}{8}
Factor out the constant in each of the terms.
-\frac{35x^{2}}{2}+\frac{39\int x^{2}\mathrm{d}x}{8}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -35 times \frac{x^{2}}{2}.
-\frac{35x^{2}}{2}+\frac{13x^{3}}{8}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 4.875 times \frac{x^{3}}{3}.
-\frac{35}{2}\times 4^{2}+\frac{13}{8}\times 4^{3}-\left(-\frac{35}{2}\times 0^{2}+\frac{13}{8}\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-176
Simplify.