Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{4}-4.16-1.04x-0.24x-0.06x^{2}\mathrm{d}x
Apply the distributive property by multiplying each term of -10.4-0.6x by each term of 0.4+0.1x.
\int _{0}^{4}-4.16-1.28x-0.06x^{2}\mathrm{d}x
Combine -1.04x and -0.24x to get -1.28x.
\int -4.16-\frac{32x}{25}-\frac{3x^{2}}{50}\mathrm{d}x
Evaluate the indefinite integral first.
\int -4.16\mathrm{d}x+\int -\frac{32x}{25}\mathrm{d}x+\int -\frac{3x^{2}}{50}\mathrm{d}x
Integrate the sum term by term.
\int -4.16\mathrm{d}x-\frac{32\int x\mathrm{d}x}{25}-\frac{3\int x^{2}\mathrm{d}x}{50}
Factor out the constant in each of the terms.
-\frac{104x}{25}-\frac{32\int x\mathrm{d}x}{25}-\frac{3\int x^{2}\mathrm{d}x}{50}
Find the integral of -4.16 using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{104x}{25}-\frac{16x^{2}}{25}-\frac{3\int x^{2}\mathrm{d}x}{50}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1.28 times \frac{x^{2}}{2}.
-\frac{104x}{25}-\frac{16x^{2}}{25}-\frac{x^{3}}{50}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -0.06 times \frac{x^{3}}{3}.
-4.16\times 4-\frac{16}{25}\times 4^{2}-\frac{4^{3}}{50}-\left(-4.16\times 0-\frac{16}{25}\times 0^{2}-\frac{0^{3}}{50}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{704}{25}
Simplify.