Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{4}-0.1x^{3}+0.8x^{2}\mathrm{d}x
Use the distributive property to multiply -0.1x by x^{2}-8x.
\int -\frac{x^{3}}{10}+\frac{4x^{2}}{5}\mathrm{d}x
Evaluate the indefinite integral first.
\int -\frac{x^{3}}{10}\mathrm{d}x+\int \frac{4x^{2}}{5}\mathrm{d}x
Integrate the sum term by term.
-\frac{\int x^{3}\mathrm{d}x}{10}+\frac{4\int x^{2}\mathrm{d}x}{5}
Factor out the constant in each of the terms.
-\frac{x^{4}}{40}+\frac{4\int x^{2}\mathrm{d}x}{5}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -0.1 times \frac{x^{4}}{4}.
-\frac{x^{4}}{40}+\frac{4x^{3}}{15}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 0.8 times \frac{x^{3}}{3}.
-\frac{4^{4}}{40}+\frac{4}{15}\times 4^{3}-\left(-\frac{0^{4}}{40}+\frac{4}{15}\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{32}{3}
Simplify.